Chromatic spectral sequence

Last updated

In mathematics, the chromatic spectral sequence is a spectral sequence, introduced by Ravenel (1978), used for calculating the initial term of the Adams spectral sequence for Brown–Peterson cohomology, which is in turn used for calculating the stable homotopy groups of spheres.

In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by Jean Leray (1946), they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra.

In mathematics, the Adams spectral sequence is a spectral sequence introduced by J. Frank Adams (1958). Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre.

In mathematics, Brown–Peterson cohomology is a generalized cohomology theory introduced by Edgar H. Brown and Franklin P. Peterson (1966), depending on a choice of prime p. It is described in detail by Douglas Ravenel . Its representing spectrum is denoted by BP.

Related Research Articles

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott, which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.

In mathematics, complex cobordism is a generalized cohomology theory related to cobordism of manifolds. Its spectrum is denoted by MU. It is an exceptionally powerful cohomology theory, but can be quite hard to compute, so often instead of using it directly one uses some slightly weaker theories derived from it, such as Brown–Peterson cohomology or Morava K-theory, that are easier to compute.

In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. There are several different categories of spectra, but they all determine the same homotopy category, known as the stable homotopy category.

Homotopy groups of spheres

In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.

In differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one.

Frank Adams British mathematician

John Frank Adams FRS was a British mathematician, one of the major contributors to homotopy theory.

In mathematics, stable homotopy theory is that part of homotopy theory concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that for a given CW-complex X the (n+i)th homotopy group of its ith iterated suspension, πn+iiX), becomes stable for large but finite values of i. For instance,

In mathematics, the J-homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres. It was defined by George W. Whitehead (1942), extending a construction of Heinz Hopf (1935).

In mathematics, the EHP spectral sequence is a spectral sequence used for inductively calculating the homotopy groups of spheres localized at some prime p. It is described in more detail in Ravenel and Mahowald (2001). It is related to the EHP long exact sequence of Whitehead (1953); the name "EHP" comes from the fact that George W. Whitehead named 3 of the maps of his sequence "E", "H", and "P".

In mathematics, the Kervaire invariant is an invariant of a framed -dimensional manifold that measures whether the manifold could be surgically converted into a sphere. This invariant evaluates to 0 if the manifold can be converted to a sphere, and 1 otherwise. This invariant was named after Michel Kervaire who built on work of Cahit Arf.

In mathematics, the May spectral sequence is a spectral sequence, introduced by J. Peter May. It is used for calculating the initial term of the Adams spectral sequence, which is in turn used for calculating the stable homotopy groups of spheres. The May spectral sequence is described in detail in.

Michael J. Hopkins American mathematician

Michael Jerome Hopkins is an American mathematician known for work in algebraic topology.

Mark Edward Mahowald was an American mathematician known for work in algebraic topology.

Douglas Ravenel American mathematician

Douglas Conner Ravenel is an American mathematician known for work in algebraic topology.

In algebraic topology, the nilpotence theorem gives a condition for an element of the coefficient ring of a ring spectrum to be nilpotent, in terms of complex cobordism. It was conjectured by Ravenel (1984) and proved by Devinatz, Hopkins & Smith (1988).

In mathematics, the Ravenel conjectures are a set of mathematical conjectures in the field of stable homotopy theory posed by Douglas Ravenel at the end of a paper published in 1984. It was earlier circulated in preprint. The problems involved have largely been resolved, with all but the "telescope conjecture" being proved in later papers by others. The telescope conjecture is now generally believed not to be true, though there are some conflicting claims concerning it in the published literature, and is taken to be an open problem. Ravenel's conjectures exerted influence on the field through the founding of the approach of chromatic homotopy theory.

References

Digital object identifier Character string used as a permanent identifier for a digital object, in a format controlled by the International DOI Foundation

In computing, a Digital Object Identifier or DOI is a persistent identifier or handle used to uniquely identify objects, standardized by the International Organization for Standardization (ISO). An implementation of the Handle System, DOIs are in wide use mainly to identify academic, professional, and government information, such as journal articles, research reports and data sets, and official publications though they also have been used to identify other types of information resources, such as commercial videos.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.