City university test | |
---|---|
Specialty | Ophthalmology Optometry |
ICD-9-CM | 95.06 |
MeSH | D003119 |
The City University test (also known as TCU test [1] or CU test [2] ) is a color vision test used to detect color vision deficiency. The commonly used Ishihara test is used to detect mainly congenital red-green color blindness, but its usefulness is limited in detecting acquired color vision deficiencies. [3]
The City University Test contains plates can be used to detect all types of color vision deficiencies. [4] The TCU test was derived from Farnsworth D15 color arrangement test. [2] The test consists of 10 plates, containing a central colored dot surrounded by four peripheral dots of different colors. The subject is asked to choose the dot closest to the central hue. Among the four peripheral dots, three peripheral colors are designed in such a way that, it makes confusion with the central color in protan, deutan and tritan deficiency. [5] The fourth color is an adjacent color in D-15 sequence [2] and that would be most similar to the central color.
In a well illuminated room, hold the test plates at about 35 cm from patient. Show the test plates and ask the patient to mention which dot is identical to central dot. Allow about 3 seconds for each page. In response to the scores noted in score sheet abnormality can be detected. [6]
Color blindness or color vision deficiency (CVD) is the decreased ability to see color or differences in color. It can impair tasks such as selecting ripe fruit, choosing clothing, and reading traffic lights. Color blindness may make some academic activities more difficult. However, issues are generally minor, and people with colorblindness automatically develop adaptations and coping mechanisms. People with total color blindness (achromatopsia) may also be uncomfortable in bright environments and have decreased visual acuity.
The Ishihara test is a color vision test for detection of red-green color deficiencies. It was named after its designer, Shinobu Ishihara, a professor at the University of Tokyo, who first published his tests in 1917.
The macula (/ˈmakjʊlə/) or macula lutea is an oval-shaped pigmented area in the center of the retina of the human eye and in other animals. The macula in humans has a diameter of around 5.5 mm (0.22 in) and is subdivided into the umbo, foveola, foveal avascular zone, fovea, parafovea, and perifovea areas.
Dichromacy is the state of having two types of functioning photoreceptors, called cone cells, in the eyes. Organisms with dichromacy are called dichromats. Dichromats require only two primary colors to be able to represent their visible gamut. By comparison, trichromats need three primary colors, and tetrachromats need four. Likewise, every color in a dichromat's gamut can be evoked with monochromatic light. By comparison, every color in a trichromat's gamut can be evoked with a combination of monochromatic light and white light.
Monochromacy is the ability of organisms or machines to perceive only light intensity without respect to spectral composition. Such organisms and machines are colorblind in the most literal sense of the word. Organisms with monochromacy are called monochromats.
The visual field is "that portion of space in which objects are visible at the same moment during steady fixation of the gaze in one direction"; in ophthalmology and neurology the emphasis is on the structure inside the visual field and it is then considered “the field of functional capacity obtained and recorded by means of perimetry”.
The Amsler grid, used since 1945, is a grid of horizontal and vertical lines used to monitor a person's central visual field. The grid was developed by Marc Amsler, a Swiss ophthalmologist. It is a diagnostic tool that aids in the detection of visual disturbances caused by changes in the retina, particularly the macula, as well as the optic nerve and the visual pathway to the brain. Amsler grid usually help detecting defects in central 20 degrees of the visual field.
Shinobu Ishihara was a Japanese ophthalmologist who created the Ishihara color test to detect colour blindness. He was an army surgeon.
A visual field test is an eye examination that can detect dysfunction in central and peripheral vision which may be caused by various medical conditions such as glaucoma, stroke, pituitary disease, brain tumours or other neurological deficits. Visual field testing can be performed clinically by keeping the subject's gaze fixed while presenting objects at various places within their visual field. Simple manual equipment can be used such as in the tangent screen test or the Amsler grid. When dedicated machinery is used it is called a perimeter.
Toxic and nutritional optic neuropathy is a group of medical disorders defined by visual impairment due to optic nerve damage secondary to a toxic substance and/or nutritional deficiency. The causes of these disorders are various, but they are linked by shared signs and symptoms, which this article will describe. In several of these disorders, both toxic and nutritional factors play a role, acting synergistically.
Cerebral achromatopsia is a type of color-blindness caused by damage to the cerebral cortex of the brain, rather than abnormalities in the cells of the eye's retina. It is often confused with congenital achromatopsia but underlying physiological deficits of the disorders are completely distinct. A similar, but distinct, deficit called color agnosia exists in which a person has intact color perception but has deficits in color recognition, such as knowing which color they are looking at.
An anomaloscope is an instrument and color vision test, often used to quantify and characterize color blindness. They are expensive and require specialized knowledge to operate, but are viewed as the gold standard for color vision standards. As a result, they are normally used for academic studies, rather than job pre-screening. They are also used to validate other color vision standards with regards to classification of color vision defects.
Optic neuropathy is damage to the optic nerve from any cause. The optic nerve is a bundle of millions of fibers in the retina that sends visual signals to the brain. [1].
The Farnsworth Lantern Test, or FALANT, is a color vision test originally developed specifically to screen sailors for tasks requiring color vision, such as identifying signal lights at night. It screens for red-green deficiencies, but not the much rarer blue color deficiency.
Subjective Refraction is a technique to determine the combination of lenses that will provide the best corrected visual acuity (BCVA). It is a clinical examination used by orthoptists, optometrists and ophthalmologists to determine a patient's need for refractive correction, in the form of glasses or contact lenses. The aim is to improve current unaided vision or vision with current glasses. Glasses must also be comfortable visually. The sharpest final refraction is not always the final script the patient wears comfortably.
A color vision test is used for measuring color vision against a standard. These tests are most often used to diagnose color vision deficiencies, though several of the standards are designed to categorize normal color vision into sub-levels. With the large prevalence of color vision deficiencies and the wide range of professions that restrict hiring the colorblind for safety or aesthetic reasons, clinical color vision standards must be designed to be fast and simple to implement. Color vision standards for academic use trade speed and simplicity for accuracy and precision.
Color blind glasses or color correcting lenses are light filters, usually in the form of glasses or contact lenses, that attempt to alleviate color blindness, by bringing deficient color vision closer to normal color vision or to make certain color tasks easier to accomplish. Despite viral status, the academic literature is generally skeptical of the efficacy of color correcting lenses.
Color tasks are tasks that involve the recognition of colors. Color tasks can be classified according to how the color is interpreted. Cole describes four categories of color tasks:
Congenital red–green color blindness is an inherited condition that is the root cause of the majority of cases of color blindness. It has no significant symptoms aside from its minor to moderate effect on color vision. It is caused by variation in the functionality of the red and/or green opsin proteins, which are the photosensitive pigment in the cone cells of the retina, which mediate color vision. Males are more likely to inherit red–green color blindness than females, because the genes for the relevant opsins are on the X chromosome. Screening for congenital red–green color blindness is typically performed with the Ishihara or similar color vision test. There is no cure for color blindness.
Holmgren's wool test also known as Holmgren's colored wool test is a color vision test used to detect color vision deficiency. Swedish physiologist Frithiof Holmgren introduced the test in 1874. It was the first successful attempt to standardize the detection of color blindness. William Thomson simplified the original Holmgren test, and later named as Holmgren-Thomson test.
{{cite journal}}
: Cite journal requires |journal=
(help)