Classical-map hypernetted-chain method

Last updated

The classical-map hypernetted-chain method (CHNC method) is a method used in many-body theoretical physics for interacting uniform electron liquids in two and three dimensions, and for non-ideal plasmas. The method extends the famous hypernetted-chain method (HNC) introduced by J. M. J van Leeuwen et al. [1] to quantum fluids as well. The classical HNC, together with the Percus–Yevick approximation, are the two pillars which bear the brunt of most calculations in the theory of interacting classical fluids. Also, HNC and PY have become important in providing basic reference schemes in the theory of fluids, [2] and hence they are of great importance to the physics of many-particle systems.

Contents

The HNC and PY integral equations provide the pair distribution functions of the particles in a classical fluid, even for very high coupling strengths. The coupling strength is measured by the ratio of the potential energy to the kinetic energy. In a classical fluid, the kinetic energy is proportional to the temperature. In a quantum fluid, the situation is very complicated as one needs to deal with quantum operators, and matrix elements of such operators, which appear in various perturbation methods based on Feynman diagrams. The CHNC method provides an approximate "escape" from these difficulties, and applies to regimes beyond perturbation theory. In Robert B. Laughlin's famous Nobel Laureate work on the fractional quantum Hall effect, an HNC equation was used within a classical plasma analogy.

In the CHNC method, the pair-distributions of the interacting particles are calculated using a mapping which ensures that the quantum mechanically correct non-interacting pair distribution function is recovered when the Coulomb interactions are switched off. [3] The value of the method lies in its ability to calculate the interacting pair distribution functions g(r) at zero and finite temperatures. Comparison of the calculated g(r) with results from Quantum Monte Carlo show remarkable agreement, even for very strongly correlated systems.

The interacting pair-distribution functions obtained from CHNC have been used to calculate the exchange-correlation energies, Landau parameters of Fermi liquids and other quantities of interest in many-body physics and density functional theory, as well as in the theory of hot plasmas. [4] [5]

See also

Related Research Articles

Quantum entanglement Correlation between measurements of quantum subsystems, even when spatially separated

Quantum entanglement is a physical phenomenon that occurs when a group of particles is generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics lacking in classical mechanics.

Superfluid helium-4 is the superfluid form of helium-4, an isotope of the element helium. A superfluid is a state of matter in which matter behaves like a fluid with zero viscosity. The substance, which looks like a normal liquid, flows without friction past any surface, which allows it to continue to circulate over obstructions and through pores in containers which hold it, subject only to its own inertia.

Fermi liquid theory

Fermi liquid theory is a theoretical model of interacting fermions that describes the normal state of most metals at sufficiently low temperatures. The interactions among the particles of the many-body system do not need to be small. The phenomenological theory of Fermi liquids was introduced by the Soviet physicist Lev Davidovich Landau in 1956, and later developed by Alexei Abrikosov and Isaak Khalatnikov using diagrammatic perturbation theory. The theory explains why some of the properties of an interacting fermion system are very similar to those of the ideal Fermi gas, and why other properties differ.

Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function. In the case of DFT, these are functionals of the spatially dependent electron density. DFT is among the most popular and versatile methods available in condensed-matter physics, computational physics, and computational chemistry.

The fractional quantum Hall effect (FQHE) is a physical phenomenon in which the Hall conductance of 2D electrons shows precisely quantised plateaus at fractional values of . It is a property of a collective state in which electrons bind magnetic flux lines to make new quasiparticles, and excitations have a fractional elementary charge and possibly also fractional statistics. The 1998 Nobel Prize in Physics was awarded to Robert Laughlin, Horst Störmer, and Daniel Tsui "for their discovery of a new form of quantum fluid with fractionally charged excitations" However, Laughlin's explanation was a phenomenological guess and only applies to fillings where is an odd integer. The microscopic origin of the FQHE is a major research topic in condensed matter physics.

Jellium, also known as the uniform electron gas (UEG) or homogeneous electron gas (HEG), is a quantum mechanical model of interacting electrons in a solid where the positive charges are assumed to be uniformly distributed in space; the electron density is a uniform quantity as well in space. This model allows one to focus on the effects in solids that occur due to the quantum nature of electrons and their mutual repulsive interactions without explicit introduction of the atomic lattice and structure making up a real material. Jellium is often used in solid-state physics as a simple model of delocalized electrons in a metal, where it can qualitatively reproduce features of real metals such as screening, plasmons, Wigner crystallization and Friedel oscillations.

In quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electron–positron pairs that change the distribution of charges and currents that generated the original electromagnetic field. It is also sometimes referred to as the self-energy of the gauge boson (photon).

Electronic correlation is the interaction between electrons in the electronic structure of a quantum system. The correlation energy is a measure of how much the movement of one electron is influenced by the presence of all other electrons.

Quantum Monte Carlo encompasses a large family of computational methods whose common aim is the study of complex quantum systems. One of the major goals of these approaches is to provide a reliable solution of the quantum many-body problem. The diverse flavor of quantum Monte Carlo approaches all share the common use of the Monte Carlo method to handle the multi-dimensional integrals that arise in the different formulations of the many-body problem. The quantum Monte Carlo methods allow for a direct treatment and description of complex many-body effects encoded in the wave function, going beyond mean-field theory and offering an exact solution of the many-body problem in some circumstances. In particular, there exist numerically exact and polynomially-scaling algorithms to exactly study static properties of boson systems without geometrical frustration. For fermions, there exist very good approximations to their static properties and numerically exact exponentially scaling quantum Monte Carlo algorithms, but none that are both.

Topological order Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

In physics, the Tsallis entropy is a generalization of the standard Boltzmann–Gibbs entropy.

Wigner crystal

A Wigner crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in 1934. A gas of electrons moving in 2D or 3D in a uniform, inert, neutralizing background will crystallize and form a lattice if the electron density is less than a critical value. This is because the potential energy dominates the kinetic energy at low densities, so the detailed spatial arrangement of the electrons becomes important. To minimize the potential energy, the electrons form a bcc lattice in 3D, a triangular lattice in 2D and an evenly spaced lattice in 1D. Most experimentally observed Wigner clusters exist due to the presence of the external confinement, i.e. external potential trap. As a consequence, deviations from the b.c.c or triangular lattice are observed. A crystalline state of the 2D electron gas can also be realized by applying a sufficiently strong magnetic field. However, it is still not clear whether it is the Wigner-crystallization that has led to observation of insulating behaviour in magnetotransport measurements on 2D electron systems, since other candidates are present, such as Anderson localization.

Chandre Dharma-wardana is a Sri Lankan-born academic and scientist. A former President of Vidyodaya Campus, he is currently a professor of theoretical physics at the Université de Montréal. He has retired and continues as a principal research scientist at the National Research Council of Canada.

Car–Parrinello molecular dynamics or CPMD refers to either a method used in molecular dynamics or the computational chemistry software package used to implement this method.

Positron annihilation spectroscopy

Positron annihilation spectroscopy (PAS) or sometimes specifically referred to as Positron annihilation lifetime spectroscopy (PALS) is a non-destructive spectroscopy technique to study voids and defects in solids.

In applied mathematics, the numerical sign problem is the problem of numerically evaluating the integral of a highly oscillatory function of a large number of variables. Numerical methods fail because of the near-cancellation of the positive and negative contributions to the integral. Each has to be integrated to very high precision in order for their difference to be obtained with useful accuracy.

A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions were originally envisioned in the context of the fractional quantum Hall effect, but subsequently took on a life of their own, exhibiting many other consequences and phenomena.

The SP formula for the dephasing rate of a particle that moves in a fluctuating environment unifies various results that have been obtained, notably in condensed matter physics, with regard to the motion of electrons in a metal. The general case requires to take into account not only the temporal correlations but also the spatial correlations of the environmental fluctuations. These can be characterized by the spectral form factor , while the motion of the particle is characterized by its power spectrum . Consequently, at finite temperature the expression for the dephasing rate takes the following form that involves S and P functions:

Ramamurti Rajaraman is an Emeritus Professor of Theoretical Physics at the School of Physical Sciences at Jawaharlal Nehru University. He was also the co-Chairman of the International Panel on Fissile Materials and a member of the Bulletin of the Atomic Scientists' Science and Security Board. He has taught and conducted research in physics at the Indian Institute of Science, the Institute for Advanced Study at Princeton, and as a visiting professor at Stanford, Harvard, MIT, and elsewhere. He received his doctorate in theoretical physics in 1963 from Cornell University. In addition to his physics publications, Rajaraman has written widely on topics including fissile material production in India and Pakistan and the radiological effects of nuclear weapon accidents.

Bernstein–Greene–Kruskal modes are nonlinear electrostatic waves that propagate in an unmagnetized, collisionless plasma. They are nonlinear solutions to the Vlasov–Poisson equation in plasma physics, and are named after physicists Ira B. Bernstein, John M. Greene, and Martin D. Kruskal, who solved and published the exact solution for the one-dimensional case in 1957.

References

  1. J.M.J. van Leeuwen; J. Groenveld; J. de Boer (1959). "New method for the calculation of the pair correlation function I". Physica . 25 (7–12): 792. Bibcode:1959Phy....25..792V. doi:10.1016/0031-8914(59)90004-7.
  2. R. Balescu (1975). Equilibrium and Non-equilibrium Statistical Mechanics. Wiley. pp. 257–277.
  3. M.W.C. Dharma-wardana; F. Perrot (2000). "Simple Classical Mapping of the Spin-Polarized Quantum Electron Gas: Distribution Functions and Local-Field Corrections". Physical Review Letters . 84 (5): 959–962. arXiv: cond-mat/9909056 . Bibcode:2000PhRvL..84..959D. doi:10.1103/PhysRevLett.84.959. PMID   11017415.
  4. M. W. C. Dharma-wardana, M. W. C.; and François Perrot, Phys. Rev. B 66, 014110 (2002)
  5. R. Bredow, Th. Bornath, W.-D. Kraeft, M.W.C. Dharma-wardana and R. Redmer, Contributions to Plasma Physics, 55, 222-229 (2015) DOI 10.1002/ctpp.201400080

Further reading