The classical general equilibrium model aims to describe the economy by aggregating the behavior of individuals and firms. [1] Note that the classical general equilibrium model is unrelated to classical economics, and was instead developed within neoclassical economics beginning in the late 19th century. [2]
In the model, the individual is assumed to be the basic unit of analysis and these individuals, both workers and employers, will make choices that reflect their unique tastes, objectives, and preferences. It is assumed that individuals' wants typically exceed their ability to satisfy them (hence scarcity of goods and time). It is further assumed that individuals will eventually experience diminishing marginal utility. Finally, wages and prices are assumed to be elastic (they move up and down freely). The classical model assumes that traditional supply and demand analysis is the best approach to understanding the labor market. The functions that follow are aggregate functions that can be thought of as the summation of all the individual participants in the market.
This section is empty. You can help by adding to it. (July 2010) |
The consumers of the labor market are firms. The demand for labor services is a derived demand, derived from the supply and demand for the firm's products in the goods market. It is assumed that a firm's objective is to maximize profit given the demand for its products, and given the production technology that is available to it.
Some notation:
Let be price level of commodities Let be nominal wage Let be real wage (w/p) Let be profit of firms Let be labor demand Let be the firms output of commodities that it will supply to the goods market.
Let us specify this output (commodity supply) function as:
It is an increasing concave function with respect to LD because of the Diminishing Marginal Product of Labor. Note that in this simplified model, labour is the only factor of production. If we were analysing the goods market, this simplification could cause problems, but because we are looking at the labor market, this simplification is worthwhile.
Generally a firm's profit is calculated as:
profit = revenue - cost
In nominal terms the profit function is:
In real terms this becomes:
In an attempt to achieve an optimal situation, firms can maximize profits with this Maximized profit function:
When functions are given, Labor Demand (LD) can be derived from this equation.
The suppliers of the labor market are households. A household can be thought of as the summation of all the individuals within the household. Each household offers an amount of labour services to the market. The supply of labour can be thought of as the summation of the labour services offered by all the households. The amount of service that each household offers depends on the consumption requirements of the household, and the individuals relative preference for consumption verses free time.
Some notation:
Let U be total utility Let YD be commodity demand (consumption) Let LS be labor supply (hours worked) Let D(LS) be disutility from working, an increasing convex function with respect to LS.
Consumption constraint = profit income + wage income
total utility = utility from consumption - disutility from work
substitute consumption:
Maximized utility function:
When functions are given, Labor Supply (LS) can be derived from this equation.
Y = C + I + G whereby Y is output, C is consumption, I is investment and G is government spending
MV=PY(Fisher's Equation of Exchange)
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.
New Keynesian economics is a school of macroeconomics that strives to provide microeconomic foundations for Keynesian economics. It developed partly as a response to criticisms of Keynesian macroeconomics by adherents of new classical macroeconomics.
In economics, profit maximization is the short run or long run process by which a firm may determine the price, input and output levels that will lead to the highest possible total profit. In neoclassical economics, which is currently the mainstream approach to microeconomics, the firm is assumed to be a "rational agent" which wants to maximize its total profit, which is the difference between its total revenue and its total cost.
In mathematics, the Gibbs phenomenon is the oscillatory behavior of the Fourier series of a piecewise continuously differentiable periodic function around a jump discontinuity. The th partial Fourier series of the function produces large peaks around the jump which overshoot and undershoot the function values. As more sinusoids are used, this approximation error approaches a limit of about 9% of the jump, though the infinite Fourier series sum does eventually converge almost everywhere except points of discontinuity.
In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.
In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.
In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values.
In mathematical economics, the Arrow–Debreu model is a theoretical general equilibrium model. It posits that under certain economic assumptions there must be a set of prices such that aggregate supplies will equal aggregate demands for every commodity in the economy.
Cournot competition is an economic model used to describe an industry structure in which companies compete on the amount of output they will produce, which they decide on independently of each other and at the same time. It is named after Antoine Augustin Cournot (1801–1877) who was inspired by observing competition in a spring water duopoly. It has the following features:
There are two fundamental theorems of welfare economics. The first states that in economic equilibrium, a set of complete markets, with complete information, and in perfect competition, will be Pareto optimal. The requirements for perfect competition are these:
A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.
In game theory, a correlated equilibrium is a solution concept that is more general than the well known Nash equilibrium. It was first discussed by mathematician Robert Aumann in 1974. The idea is that each player chooses their action according to their private observation of the value of the same public signal. A strategy assigns an action to every possible observation a player can make. If no player would want to deviate from their strategy, the distribution from which the signals are drawn is called a correlated equilibrium.
Hotelling's lemma is a result in microeconomics that relates the supply of a good to the maximum profit of the producer. It was first shown by Harold Hotelling, and is widely used in the theory of the firm.
In mathematics and economics, the envelope theorem is a major result about the differentiability properties of the value function of a parameterized optimization problem. As we change parameters of the objective, the envelope theorem shows that, in a certain sense, changes in the optimizer of the objective do not contribute to the change in the objective function. The envelope theorem is an important tool for comparative statics of optimization models.
In mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the stable state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on.
Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.
A Robinson Crusoe economy is a simple framework used to study some fundamental issues in economics. It assumes an economy with one consumer, one producer and two goods. The title "Robinson Crusoe" is a reference to the 1719 novel of the same name authored by Daniel Defoe.
In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.
In labour economics, Shapiro–Stiglitz theory of efficiency wages is an economic theory of wages and unemployment in labour market equilibrium. It provides a technical description of why wages are unlikely to fall and how involuntary unemployment appears. This theory was first developed by Carl Shapiro and Joseph Stiglitz.
In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .