Clinical electrophysiology

Last updated

Clinical electrophysiology is the application of electrophysiology principles to medicine. The two main branches of this discipline are electrotherapy and electrophysiologic testing (EEG, electromyography, etc.) Clinical electrophysiology can be utilized in the study and treatment of various physiological conditions, and most notably in clinical cardiac electrophysiology.

Contents

Clinical cardiac electrophysiology

Cardiac Electrophysiology (also referred to as clinical cardiac electrophysiology, arrhythmia services, or electrophysiology), is a branch of the medical specialty of clinical cardiology and is concerned with the study and treatment of rhythm disorders of the heart.

Assessment of the Eye

Through the use of electrophysiological techniques, dissections of the visual system can be made. [1] The use of both electrophysiological information in conjunction with other clinical tests, imaging, and field instrumentation, a deep and comprehensive assessment of the ocular and visual pathways can be made. Alone, electrophysiology can also monitor ocular disease, determining drug-induced ocular toxicity, and evaluating individuals at risk for familial eye disease.

Electroanalgesia

Clinical electrophysiology has been used to modulate pain for over a century. [2] Equipment designs have improved significantly since the advent of electroanalgesia and application has been made much easier. The use of electrotherapy to modulate pain is characterized in one of four ways: subsensory-level stimulation, sensory-level stimulation, motor-level stimulation, and noxious-level stimulation. Commercial stimulators can typically achieve any of the four levels of stimulation, though some stimulators may be more adept at a certain levels of stimulation than others. Transcutaneous electrical nerve stimulation (TENS) is an umbrella term used to characterize all forms of electroanalgesia utilizing surface electrodes applied to the skin.

Subsensory-level stimulation

Peak amplitudes are typically below 1 mA and do not produce phase charges strong enough to excite peripheral nerve fibers and reach the sensory threshold. [2] Stimulators that work at this level are termed microcurrent electrical nerve stimulators (MENS). In addition to the low amplitudes, pulse durations are short, thereby activating neither the muscle nor the nerve. No studies have shown clinical effectiveness of subsensory-level stimulation. While trade publications and clinical seminars have claimed the effectiveness of MENS on a variety of conditions, the intensity of the stimulation is too low for sensory nerve stimulation. While some researches claim that the microcurrent has an effect on the cellular activity, there is insufficient evidence to support the use of MENS in electroanalgesia.

Sensory-level stimulation

Defined as stimulation at or above the sensory threshold and below the motor threshold, sensory-level stimulation is frequently achieved with a frequency in the 50-100 pps range, with short pulse and phase durations of 2-50 μs, and low intensities. [2] Short pulses must be used to avoid producing tetanic muscular contractions - muscular movement is not desirable in sensory-level TENS.

Amplitude is adjusted to achieve superficial cutaneous nerve fiber activation. The patient should perceive paresthesia beneath the electrodes and amplitude is adjusted according to patient feedback. The mechanism of action for this level of electroanalgesia is likely either the direct peripheral block of nerve transmission or the activation of central inhibition mechanisms of pain transmission by large-diameter fiber stimulation.

Sensory-level stimulation is the most researched level of electroanalgesia and is usually perceived by the patient as very comfortable. There should be an immediate decreased response to pain and treatment times last 20–30 minutes.

Motor-level stimulation

Response to motor-level stimulation is often not immediately but its effect is long-lasting. [2] Due to the lack of immediate effect, treatment times are typically longer and are conducted for 45 minutes or longer. The mechanism of action may be attributed to the production of rhythmic motor contractions that activate the endogenous opiate mechanisms of analgesia. This level of electroanalgesia is most often used in patients with deep, throbbing, or chronic pain.

Noxious-level stimulation

By utilizing low frequency (1-5 pps) or high frequency (80-100 pps) stimuli with durations of up to 1 second and amplitudes that produce pain, noxious-level stimulation seeks to ameliorate pain through the induction of a painful stimulus either at the pain site or at a remote location. [2] The mechanism of action is believed to be related to an endorphin-mediated mechanism accompanied by the release of endogenous opiates that increase the patient's pain threshold. This level of stimulation is not the first approach chosen for electroanalgesia due to its induction of pain.

Other uses of Clinical Electrophysiology

See also

Related Research Articles

In neuroscience, an F wave is one of several motor responses which may follow the direct motor response (M) evoked by electrical stimulation of peripheral motor or mixed nerves. F-waves are the second of two late voltage changes observed after stimulation is applied to the skin surface above the distal region of a nerve, in addition to the H-reflex which is a muscle reaction in response to electrical stimulation of innervating sensory fibers. Traversal of F-waves along the entire length of peripheral nerves between the spinal cord and muscle, allows for assessment of motor nerve conduction between distal stimulation sites in the arm and leg, and related motoneurons (MN's) in the cervical and lumbosacral cord. F-waves are able to assess both afferent and efferent loops of the alpha motor neuron in its entirety. As such, various properties of F-wave motor nerve conduction are analyzed in nerve conduction studies (NCS), and often used to assess polyneuropathies, resulting from states of neuronal demyelination and loss of peripheral axonal integrity.

Vagus nerve

The vagus nerve, historically cited as the pneumogastric nerve, is the tenth cranial nerve or CN X, and interfaces with the parasympathetic control of the heart, lungs, and digestive tract. The vagus nerves are normally referred to in the singular. It is the longest nerve of the autonomic nervous system in the human body and comprises sensory and motor fibers. The sensory fibers originate from neurons of the nodose ganglion, whereas the motor fibers come from neurons of the dorsal motor nucleus of the vagus and the nucleus ambiguus.

An evoked potential or evoked response is an electrical potential in a specific pattern recorded from a specific part of the nervous system, especially the brain, of a human or other animals following presentation of a stimulus such as a light flash or a pure tone. Different types of potentials result from stimuli of different modalities and types. EP is distinct from spontaneous potentials as detected by electroencephalography (EEG), electromyography (EMG), or other electrophysiologic recording method. Such potentials are useful for electrodiagnosis and monitoring that include detections of disease and drug-related sensory dysfunction and intraoperative monitoring of sensory pathway integrity.

Transcutaneous electrical nerve stimulation

Transcutaneous electrical nerve stimulation is the use of electric current produced by a device to stimulate the nerves for therapeutic purposes. TENS, by definition, covers the complete range of transcutaneously applied currents used for nerve excitation although the term is often used with a more restrictive intent, namely to describe the kind of pulses produced by portable stimulators used to reduce pain. The unit is usually connected to the skin using two or more electrodes which are typically conductive gel pads. A typical battery-operated TENS unit is able to modulate pulse width, frequency and intensity. Generally TENS is applied at high frequency (>50 Hz) with an intensity below motor contraction or low frequency (<10 Hz) with an intensity that produces motor contraction. While the use of TENS has proved effective in clinical studies, there is controversy over which conditions the device should be used to treat.

Electromyography Electrodiagnostic medicine technique for evaluating and recording the electrical activity produced by skeletal muscles

Electromyography (EMG) is an electrodiagnostic medicine technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG is performed using an instrument called an electromyograph to produce a record called an electromyogram. An electromyograph detects the electric potential generated by muscle cells when these cells are electrically or neurologically activated. The signals can be analyzed to detect medical abnormalities, activation level, or recruitment order, or to analyze the biomechanics of human or animal movement. In Computer Science, EMG is also used as middleware in gesture recognition towards allowing the input of physical action to a computer as a form of human-computer interaction.

Electrotherapy

Electrotherapy is the use of electrical energy as a medical treatment. In medicine, the term electrotherapy can apply to a variety of treatments, including the use of electrical devices such as deep brain stimulators for neurological disease. The term has also been applied specifically to the use of electric current to speed wound healing. Additionally, the term "electrotherapy" or "electromagnetic therapy" has also been applied to a range of alternative medical devices and treatments.

Nerve conduction study

A nerve conduction study (NCS) is a medical diagnostic test commonly used to evaluate the function, especially the ability of electrical conduction, of the motor and sensory nerves of the human body. These tests may be performed by medical specialists such as clinical neurophysiologists, physical therapists, chiropractors, physiatrists, and neurologists who subspecialize in electrodiagnostic medicine. In the United States, neurologists and physiatrists receive training in electrodiagnostic medicine as part of residency training and in some cases acquire additional expertise during a fellowship in clinical neurophysiology, electrodiagnostic medicine, or neuromuscular medicine. Outside the US, clinical neurophysiologists learn needle EMG and NCS testing.

Pulpitis is inflammation of dental pulp tissue. The pulp contains the blood vessels the nerves and connective tissue inside a tooth and provides the tooth’s blood and nutrients. Pulpitis is mainly caused by bacterial infection which itself is a secondary development of caries. It manifests itself in the form of a toothache.

Rheobase

Rheobase is a measure of membrane potential excitability. In neuroscience, rheobase is the minimal current amplitude of infinite duration that results in the depolarization threshold of the cell membranes being reached, such as an action potential or the contraction of a muscle. In Greek, the root rhe translates to "current or flow", and basi means "bottom or foundation": thus the rheobase is the minimum current that will produce an action potential or muscle contraction.

Chronaxie

Chronaxie is the minimum time required for an electric current to double the strength of the rheobase to stimulate a muscle or a neuron. Rheobase is the lowest intensity with indefinite pulse duration which just stimulated muscles or nerves. Chronaxie is dependent on the density of voltage-gated sodium channels in the cell, which affect that cell’s excitability. Chronaxie varies across different types of tissue: fast-twitch muscles have a lower chronaxie, slow-twitch muscles have a higher one. Chronaxie is the tissue-excitability parameter that permits choice of the optimum stimulus pulse duration for stimulation of any excitable tissue. Chronaxie (c) is the Lapicque descriptor of the stimulus pulse duration for a current of twice rheobasic (b) strength, which is the threshold current for an infinitely long-duration stimulus pulse. Lapicque showed that these two quantities (c,b) define the strength-duration curve for current: I = b(1+c/d), where d is the pulse duration. However, there are two other electrical parameters used to describe a stimulus: energy and charge. The minimum energy occurs with a pulse duration equal to chronaxie. Minimum charge (bc) occurs with an infinitely short-duration pulse. Choice of a pulse duration equal to 10c requires a current of only 10% above rheobase (b). Choice of a pulse duration of 0.1c requires a charge of 10% above the minimum charge (bc).

Microneurography

Microneurography is a neurophysiological method employed by scientists to visualize and record the normal traffic of nerve impulses that are conducted in peripheral nerves of waking human subjects. The method has been successfully employed to reveal functional properties of a number of neural systems, e.g. sensory systems related to touch, pain, and muscle sense as well as sympathetic activity controlling the constriction state of blood vessels. To study nerve impulses of an identified neural system, a fine tungsten needle electrode is inserted into the nerve and connected to a high gain recording amplifier. The exact position of the electrode tip within the nerve is then adjusted in minute steps until the electrode discriminates impulses of the neural system of interest. A unique feature and a significant strength of the microneurography method is that subjects are fully awake and able to cooperate in tests requiring mental attention, while impulses in a representative nerve fibre or set of nerve fibres are recorded, e.g. when cutaneous sense organs are stimulated or subjects perform voluntary precision movements.

Group C nerve fiber

Group C nerve fibers are one of three classes of nerve fiber in the central nervous system (CNS) and peripheral nervous system (PNS). The C group fibers are unmyelinated and have a small diameter and low conduction velocity, whereas Groups A and B are myelinated. Group C fibers include postganglionic fibers in the autonomic nervous system (ANS), and nerve fibers at the dorsal roots. These fibers carry sensory information.

The vestibular evoked myogenic potential is a neurophysiological assessment technique used to determine the function of the otolithic organs of the inner ear. It complements the information provided by caloric testing and other forms of inner ear testing. There are two different types of VEMPs. One is the oVEMP and another is the cVEMP. The oVEMP measures integrity of the utricule and superior vestibular nerve and the cVemp measures the saccule and the inferior vestibular nerve.

Repetitive nerve stimulation is a variant of the nerve conduction study where electrical stimulation is delivered to a motor nerve repeatedly several times per second. By observing the change in the muscle electrical response (CMAP) after several stimulations, a physician can assess for the presence of a neuromuscular junction disease, and differentiate between presynaptic and postsynaptic conditions. The test was first described by German neurologist Friedrich Jolly in 1895, and is also known as Jolly's test.

Electroanalgesia is a form of analgesia, or pain relief, that uses electricity to ease pain. Electrical devices can be internal or external, at the site of pain (local) or delocalized throughout the whole body. It works by interfering with the electric currents of pain signals, inhibiting them from reaching the brain and inducing a response; different from traditional analgesics, such as opiates which mimic natural endorphins and NSAIDs that help relieve inflammation and stop pain at the source. Electroanalgesia has a lower addictive potential and poses less health threats to the general public, but can cause serious health problems, even death, in people with other electrical devices such as pacemakers or internal hearing aids, or with heart problems.

A depolarizing prepulse (DPP) is an electrical stimulus that causes the potential difference measured across a neuronal membrane to become more positive or less negative, and precedes another electrical stimulus. DPPs may be of either the voltage or current stimulus variety and have been used to inhibit neural activity, selectively excite neurons, and increase the pain threshold associated with electrocutaneous stimulation.

Somatosensory evoked potential is the electrical activity of the brain that results from the stimulation of touch. SEP tests measure that activity and are a useful, noninvasive means of assessing somatosensory system functioning. By combining SEP recordings at different levels of the somatosensory pathways, it is possible to assess the transmission of the afferent volley from the periphery up to the cortex. SEP components include a series of positive and negative deflections that can be elicited by virtually any sensory stimuli. For example, SEPs can be obtained in response to a brief mechanical impact on the fingertip or to air puffs. However, SEPs are most commonly elicited by bipolar transcutaneous electrical stimulation applied on the skin over the trajectory of peripheral nerves of the upper limb or lower limb, and then recorded from the scalp. In general, somatosensory stimuli evoke early cortical components, generated in the contralateral primary somatosensory cortex (S1), related to the processing of the physical stimulus attributes. About 100 ms after stimulus application, additional cortical regions are activated, such as the secondary somatosensory cortex (S2), and the posterior parietal and frontal cortices, marked by a parietal P100 and bilateral frontal N140. SEPs are routinely used in neurology today to confirm and localize sensory abnormalities, to identify silent lesions and to monitor changes during surgical procedures.

As long as humans have experienced pain, they have given explanations for its existence and sought soothing agents to dull or cease the painful sensation. Archaeologists have uncovered clay tablets dating back as far as 5,000 BC which reference the cultivation and use of the opium poppy to bring joy and cease pain. In 800 BC, the Greek writer Homer wrote in his epic, The Odyssey, of Telemachus, a man who used opium to soothe his pain and forget his worries. While some cultures researched analgesics and allowed or encouraged their use, others perceived pain to be a necessary, integral sensation. Physicians of the 19th century used pain as a diagnostic tool, theorizing that a greater amount of personally perceived pain was correlated to a greater internal vitality, and as a treatment in and of itself, inflicting pain on their patients to rid the patient of evil and unbalanced humors. This article focuses both on the history of how pain has been perceived across time and culture, but also how malleable an individual's perception of pain can be due to factors like situation, their visual perception of the pain, and previous history with pain.

Neuromodulation is "the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body". It is carried out to normalize – or modulate – nervous tissue function. Neuromodulation is an evolving therapy that can involve a range of electromagnetic stimuli such as a magnetic field (rTMS), an electric current, or a drug instilled directly in the subdural space. Emerging applications involve targeted introduction of genes or gene regulators and light (optogenetics), and by 2014, these had been at minimum demonstrated in mammalian models, or first-in-human data had been acquired. The most clinical experience has been with electrical stimulation.

Bioelectromagnetic medicine deals with the phenomenon of resonance signaling and discusses how specific frequencies modulate cellular function to restore or maintain health. Such electromagnetic (EM) signals are then called "medical information" that is used in health informatics.

References

  1. Whatham, Andrew R (2013). "The value of clinical electrophysiology in the assessment of the eye and visual system in the era of advanced imaging". Clinical and Experimental Optometry. 97: 99–115. doi: 10.1111/cxo.12085 .
  2. 1 2 3 4 5 Andrew J. Robinson, Lynn Snyder-Mackler. "Clinical Electrophysiology: Electrotherapy and Electrophysiologic Testing," Lippincott Williams & Wilkins, 1994, ISBN   0-683-07817-8