Cluster manager

Last updated

Within cluster and parallel computing, a cluster manager is usually backend graphical user interface (GUI) or command-line interface (CLI) software that runs on a set of cluster nodes that it manages (in some cases it runs on a different server or cluster of management servers). The cluster manager works together with a cluster management agent. These agents run on each node of the cluster to manage and configure services, a set of services, or to manage and configure the complete cluster server itself (see super computing.) In some cases the cluster manager is mostly used to dispatch work for the cluster (or cloud) to perform. In this last case a subset of the cluster manager can be a remote desktop application that is used not for configuration but just to send work and get back work results from a cluster. In other cases the cluster is more related to availability and load balancing than to computational or specific service clusters.

Contents

See also

Further reading

Cluster management

Autonomic computing

Fault tolerance

Background

Related Research Articles

Distributed computing is a field of computer science that studies distributed systems. A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another from any system. The components interact with one another in order to achieve a common goal. Three significant characteristics of distributed systems are: concurrency of components, lack of a global clock, and independent failure of components. It deals with a central challenge that, when components of a system fails, it doesn't imply the entire system fails. Examples of distributed systems vary from SOA-based systems to massively multiplayer online games to peer-to-peer applications.

Flynn's taxonomy is a classification of computer architectures, proposed by Michael J. Flynn in 1966. and extended in 1972. The classification system has stuck, and it has been used as a tool in design of modern processors and their functionalities. Since the rise of multiprocessing central processing units (CPUs), a multiprogramming context has evolved as an extension of the classification system. Vector processing, covered by Duncan's taxonomy, is missing from Flynn's work because the Cray-1 was released in 1977: Flynn's second paper was published in 1972.

Checkpointing is a technique that provides fault tolerance for computing systems. It basically consists of saving a snapshot of the application's state, so that applications can restart from that point in case of failure. This is particularly important for the long running applications that are executed in the failure-prone computing systems.

MOSIX is a proprietary distributed operating system. Although early versions were based on older UNIX systems, since 1999 it focuses on Linux clusters and grids. In a MOSIX cluster/grid there is no need to modify or to link applications with any library, to copy files or login to remote nodes, or even to assign processes to different nodes – it is all done automatically, like in an SMP.

MapReduce is a programming model and an associated implementation for processing and generating big data sets with a parallel, distributed algorithm on a cluster.

Replication in computing involves sharing information so as to ensure consistency between redundant resources, such as software or hardware components, to improve reliability, fault-tolerance, or accessibility.

The Terascale Open-source Resource and QUEue Manager (TORQUE) is a distributed resource manager providing control over batch jobs and distributed compute nodes. TORQUE can integrate with the non-commercial Maui Cluster Scheduler or the commercial Moab Workload Manager to improve overall utilization, scheduling and administration on a cluster.

GPFS is a high-performance clustered file system software developed by IBM. It can be deployed in shared-disk or shared-nothing distributed parallel modes, or a combination of these. It is used by many of the world's largest commercial companies, as well as some of the supercomputers on the Top 500 List. For example, it is the filesystem of the Summit at Oak Ridge National Laboratory which was the #1 fastest supercomputer in the world in the November 2019 top500 list of supercomputers. Summit is a 200 Petaflops system composed of more than 9,000 POWER9 processors and 27,000 NVIDIA Volta GPUs. The storage filesystem called Alpine has 250 PB of storage using Spectrum Scale on IBM ESS storage hardware, capable of approximately 2.5TB/s of sequential I/O and 2.2TB/s of random I/O.

Distributed networking is a distributed computing network system where components of the program and data depend on multiple sources.

Grid-oriented Storage (GOS) was a term used for data storage by a university project during the era when the term grid computing was popular.

Keith Marzullo is the inventor of Marzullo's algorithm, which is part of the basis of the Network Time Protocol and the Windows Time Service. On August 1, 2016 he became the Dean of the University of Maryland College of Information Studies after serving as the Director of the NITRD National Coordination Office. Prior to this he was a Professor in the Department of Computer Science and Engineering at University of California, San Diego. In 2011 he was inducted as a Fellow of the Association for Computing Machinery.

Computer cluster Set of computers configured in a distributed computing system

A computer cluster is a set of computers that work together so that they can be viewed as a single system. Unlike grid computers, computer clusters have each node set to perform the same task, controlled and scheduled by software.

In computing, algorithmic skeletons, or parallelism patterns, are a high-level parallel programming model for parallel and distributed computing.

A distributed operating system is system software over a collection of independent, networked, communicating, and physically separate computational nodes. They handle jobs which are serviced by multiple CPUs. Each individual node holds a specific software subset of the global aggregate operating system. Each subset is a composite of two distinct service provisioners. The first is a ubiquitous minimal kernel, or microkernel, that directly controls that node's hardware. Second is a higher-level collection of system management components that coordinate the node's individual and collaborative activities. These components abstract microkernel functions and support user applications.

Apache Hama

Apache Hama is a distributed computing framework based on bulk synchronous parallel computing techniques for massive scientific computations e.g., matrix, graph and network algorithms. It was a Top Level Project under the Apache Software Foundation. Retired in April 2020, project resources are made available as part of the Apache Attic. It was created by Edward J. Yoon, who named it and was inspired by Google's Pregel large-scale graph computing framework described in 2010. Hama also means hippopotamus in Korean language (하마), following the trend of naming Apache projects after animals and zoology.

Data-intensive computing is a class of parallel computing applications which use a data parallel approach to process large volumes of data typically terabytes or petabytes in size and typically referred to as big data. Computing applications which devote most of their execution time to computational requirements are deemed compute-intensive, whereas computing applications which require large volumes of data and devote most of their processing time to I/O and manipulation of data are deemed data-intensive.

A distributed file system for cloud is a file system that allows many clients to have access to data and supports operations on that data. Each data file may be partitioned into several parts called chunks. Each chunk may be stored on different remote machines, facilitating the parallel execution of applications. Typically, data is stored in files in a hierarchical tree, where the nodes represent directories. There are several ways to share files in a distributed architecture: each solution must be suitable for a certain type of application, depending on how complex the application is. Meanwhile, the security of the system must be ensured. Confidentiality, availability and integrity are the main keys for a secure system.

In the high-performance computing environment, burst buffer is a fast intermediate storage layer positioned between the front-end computing processes and the back-end storage systems. It bridges the performance gap between the processing speed of the compute nodes and the Input/output (I/O) bandwidth of the storage systems. Burst buffers are often built from arrays of high-performance storage devices, such as NVRAM and SSD. It typically offers from one to two orders of magnitude higher I/O bandwidth than the back-end storage systems.

Apache Pinot Apache Pinot is a column-oriented, open-source, distributed data store written in Java.

Apache Pinot is a column-oriented, open-source, distributed data store written in Java. Pinot is designed to execute OLAP queries with low latency. It is suited in contexts where fast analytics, such as aggregations, are needed on immutable data, possibly, with real-time data ingestion. The name Pinot comes from the Pinot grape vines that are pressed into liquid that is used to produce a variety of different wines. The founders of the database chose the name as a metaphor for analyzing vast quantities of data from a variety of different file formats or streaming data sources.