Collaborative product development (collaborative product design) (CPD) is a business strategy, work process and collection of software applications that facilitates different organizations to work together on the development of a product. It is also known as collaborative product definition management (cPDM).[ citation needed ]
Collaborative Product Development helps individual users and companies manage, share and view your CAD projects without the cost and complexity of purchasing an entire PDM or PLM solution. CPD comes in the form of a Software as a service delivery model, which allows for rapid iterations and little or no downloads and installs.
Exactly what technology comes under this title does vary depending on whom one asks; however, it usually consists of the Product Lifecycle Management (PLM) areas of: Product Data Management (PDM); Product visualization; team collaboration and conferencing tools; and supplier sourcing software. It is generally accepted as not including CAD geometry tools, but does include data translation technology.[ citation needed ]
Clearly general collaborative software such as email and chat (instant messaging) is used within the CPD process. One important technology is application and desktop sharing, allowing one person to view what another person is doing on a remote machine. For CAD and product visualization applications an ‘appshare’ product that supports OpenGL graphics is required. Another common application is Data sharing via Web based portals.
With product data an important addition is the handling of high volumes of geometry and metadata. Exactly what techniques and technology is required depends on the level of collaboration being carried out and the commonality (or lack thereof) of the partner sites’ systems.
Collaboration using PLM and CAx tools requires technology to support the needs of:
Appropriate technologies are required to support collaboration across these boundaries.
People
Effective PLM collaboration will typically require the participation of people who do not have high level CAD skills. This requires improved user interfaces including tailorable user interfaces that can be tailored to the skill level and specialty of the user.
Improved visualization capabilities, especially those that provide a meaningful view of complex information such as the results of a fluid flow analysis will leverage the value of all participants in the collaboration process. Effective collaboration requires that a participant be freed from the burden of knowing the intent history typically imbedded within and constricting the use of parametric models.
Organizations
Community collaboration requires that companies, suppliers, and customers share information in a secure environment, ensure compliance with enterprise and regulatory rules and enforce the process management rules of the community as well as the individual organizations.
Data
The most basic collaboration data need is the ability to operate in a MultiCAD environment. That is, however, only the beginning. Models from multiple CAD sources must be assembled into an active digital mockup allowing change and/or design in context.
Product design is typically a highly iterative and interactive activity involving a group of designers who are geographically dispersed. A neutral modeling commands (NMC) based method is proposed to construct a real-time collaborative product design platform within heterogeneous CAD systems. [1] Different from the visualization-based approaches, models can be constructed and modified synchronously from various sites in the proposed collaborative design environment. Based on a translation mechanism between system modeling operations (SMO) and neutral modeling commands (NMC), every operation given by a user on one site will be translated into a NMC and be sent to all the other sites through the network. When the other sites receive this command, it is converted into corresponding SMOs on the local system. In this way, the real-time collaborative product design with heterogeneous CAD systems is achieved.
If the collaborating parties have the same PDM and CAD systems the task usually involves the direct access and transfer of data between sites. The PDM system will have data storage at more than one site for the large graphics files, file may be copied between sites, how they are synchronized being controlled by the server(s). For the management server and metadata there are a number of options. There could be a single server that is accessed from all locations or multiple PDM servers that communicate with one another. In both cases the PDM software controls access for groups defining what data they can see and edit.
With different CAD systems the approach varies slightly depending on whether the ownership, and therefore authorship, of components changes or not. If geometry only has to be viewed then a Product visualization neutral file format (e.g.JT) can be used for tasks such as viewing, markup (redlining) or multi-cad digital mock-up (DMU). It maybe that authorship does not change but components from one group needs to be placed in the assembly of another group so that they can construct their parts, so called work in context. This requires transfer of geometry from one format to another by means of a visualization format or full data translation. Between some systems there is the possibility of ‘data interoperability’ where geometry from one format can be associatively copied to another. If the ownership of a particular file is being transfer, then full data translation is required using some form of CAD data exchange technology. For the translation process Product Data Quality (PDQ) checkers are often employed to reduce problems in transferring the work. If different PDM/EDM systems are in use, then either data structures or metadata can be transferred using STEP or communication between databases can be achieved with tools based around XML data transfer.
Computer-aided design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The term CADD is also used.
Dassault Systèmes SE, is a French software company headquartered in Vélizy-Villacoublay, France that develops 3D design, 3D digital mock-up, and product lifecycle management (PLM) software.
Computer-aided manufacturing (CAM) also known as Computer-aided Modeling or Computer-aided Machining is the use of software to control machine tools and related ones in the manufacturing of work pieces. This is not the only definition for CAM, but it is the most common; CAM may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage. Its primary purpose is to create a faster production process and components and tooling with more precise dimensions and material consistency, which in some cases, uses only the required amount of raw material, while simultaneously reducing energy consumption. CAM is now a system used in schools and lower educational purposes. CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software, which then controls the machine tool. CAM is used in many schools alongside Computer-Aided Design (CAD) to create objects.
Creo Elements/Pro, or Creo Elements/Direct Modeling, formerly known, together with Creo Parametric, as Pro/Engineer and Wildfire, is a solid modeling or CAD, CAM, CAE, and associative 3D modeling application, running on Microsoft Windows.
In industry, product lifecycle management (PLM) is the process of managing the entire lifecycle of a product from inception, through engineering design and manufacture, to service and disposal of manufactured products. PLM integrates people, data, processes and business systems and provides a product information backbone for companies and their extended enterprise.
Product data management (PDM) or Product information management (PIM) is the business function often within product lifecycle management (PLM) that is responsible for the management and publication of product data. In software engineering, this is known as version control. The goals of product data management include ensuring all stakeholders share a common understanding, that confusion during the execution of the processes is minimized, and that the highest standards of quality controls are maintained.
PTC Inc. is an American computer software and services company founded in 1985 and headquartered in Boston, Massachusetts. The global technology company has over 6,000 employees in across 80 offices 30 countries, 1,150 technology partners and over $1bn in revenue. The company began initially developing parametric, associative feature-based, solid computer-aided design (CAD) modeling software in 1988, including an Internet-based product for product lifecycle management (PLM) in 1998. PTC products and services now include Internet of things (IoT) and augmented reality (AR) among others.
Computer-aided technologies (CAx) is the use of computer technology to aid in the design, analysis, and manufacture of products.
Digital MockUp or DMU is a concept that allows the description of a product, usually in 3D, for its entire life cycle. Digital Mockup is enriched by all the activities that contribute to describing the product. The product design engineers, the manufacturing engineers, and the support engineers work together to create and manage the DMU. One of the objectives is to have an important knowledge of the future or the supported product to replace any physical prototypes with virtual ones, using 3D computer graphics techniques. As an extension it is also frequently referred to as Digital Prototyping or Virtual Prototyping. These two specific definitions refer to the production of a physical prototype, but they are part of the DMU concept. DMU allows engineers to design and configure complex products and validate their designs without ever needing to build a physical model.
JT is an ISO-standardized 3D data format and is in industry used for product visualization, collaboration, CAD data exchange, and in some also for long-term data retention. It can contain any combination of approximate (faceted) data, boundary representation surfaces (NURBS), Product and Manufacturing Information (PMI), and Metadata either exported from the native CAD system or inserted by a product data management (PDM) system.
Assembly modeling is a technology and method used by computer-aided design and product visualization computer software systems to handle multiple files that represent components within a product. The components within an assembly are represented as solid or surface models.
CAD data exchange is a modality of data exchange used to translate data between different Computer-aided design (CAD) authoring systems or between CAD and other downstream CAx systems.
Knowledge-based engineering (KBE) is the application of knowledge-based systems technology to the domain of manufacturing design and production. The design process is inherently a knowledge-intensive activity, so a great deal of the emphasis for KBE is on the use of knowledge-based technology to support computer-aided design (CAD) however knowledge-based techniques can be applied to the entire product lifecycle.
Virtual engineering (VE) is defined as integrating geometric models and related engineering tools such as analysis, simulation, optimization, and decision making tools, etc., within a computer-generated environment that facilitates multidisciplinary collaborative product development. Virtual engineering shares many characteristics with software engineering, such as the ability to obtain many different results through different implementations.
Digital Prototyping gives conceptual design, engineering, manufacturing, and sales and marketing departments the ability to virtually explore a complete product before it's built. Industrial designers, manufacturers, and engineers use Digital Prototyping to design, iterate, optimize, validate, and visualize their products digitally throughout the product development process. Innovative digital prototypes can be created via CAutoD through intelligent and near-optimal iterations, meeting multiple design objectives, identifying multiple figures of merit, and reducing development gearing and time-to-market. Marketers also use Digital Prototyping to create photorealistic renderings and animations of products prior to manufacturing. Companies often adopt Digital Prototyping with the goal of improving communication between product development stakeholders, getting products to market faster, and facilitating product innovation.
Ashlar-Vellum, a dba of Ashlar Incorporated, is a developer of Computer-aided design (CAD) and 3D modeling software for both the Macintosh and Microsoft Windows platforms. Ashlar-Vellum's interface, designed in 1988 by Dr. Martin Newell and Dan Fitzpatrick, featured an automated Drafting Assistant that found useful points in the geometry and allowed the artist to quickly connect to locations like the "midpoint" or "tangent".
ProductCenter is a commercial software product, that is an integrated suite of Product Lifecycle Management (PLM) software for managing product data. The software was engineered for the Microsoft Windows and UNIX operating systems. Along with core applications, it includes localized and web-based services. ProductCenter is suited for managing various types of CAx data, but it can be used for many forms of data management and product management.
WorkNC is a Computer aided manufacturing (CAM) software developed by Sescoi for multi-axis machining.
NX, formerly known as "unigraphics", is an advanced high-end CAD/CAM/CAE, which has been owned since 2007 by Siemens PLM Software. In 2000, Unigraphics purchased SDRC I-DEAS and began an effort to integrate aspects of both software packages into a single product which became Unigraphics NX or NX.
PTC Windchill is a Product Lifecycle Management (PLM) software product that is offered by PTC. Windchill is currently being used by over 1.1 million users worldwide.