Collision response

Last updated

In the context of classical mechanics simulations and physics engines employed within video games, collision response deals with models and algorithms for simulating the changes in the motion of two solid bodies following collision and other forms of contact.

Contents

Rigid body contact

The compression and expansion phases of a collision between two solid bodies Body collision phases.png
The compression and expansion phases of a collision between two solid bodies

Two rigid bodies in unconstrained motion, potentially under the action of forces, may be modelled by solving their equations of motion using numerical integration techniques. On collision, the kinetic properties of two such bodies seem to undergo an instantaneous change, typically resulting in the bodies rebounding away from each other, sliding, or settling into relative static contact, depending on the elasticity of the materials and the configuration of the collision.

Contact forces

The origin of the rebound phenomenon, or reaction, may be traced to the behaviour of real bodies that, unlike their perfectly rigid idealised counterparts, do undergo minor compression on collision, followed by expansion, prior to separation. The compression phase converts the kinetic energy of the bodies into potential energy and to an extent, heat. The expansion phase converts the potential energy back to kinetic energy.

During the compression and expansion phases of two colliding bodies, each body generates reactive forces on the other at the points of contact, such that the sum reaction forces of one body are equal in magnitude but opposite in direction to the forces of the other, as per the Newtonian principle of action and reaction. If the effects of friction are ignored, a collision is seen as affecting only the component of the velocities that are directed along the contact normal and as leaving the tangential components unaffected

Reaction

The degree of relative kinetic energy retained after a collision, termed the restitution, is dependent on the elasticity of the bodies‟ materials. The coefficient of restitution between two given materials is modeled as the ratio of the relative post-collision speed of a point of contact along the contact normal, with respect to the relative pre-collision speed of the same point along the same normal. These coefficients are typically determined empirically for different material pairs, such as wood against concrete or rubber against wood. Values for close to zero indicate inelastic collisions such as a piece of soft clay hitting the floor, whereas values close to one represent highly elastic collisions, such as a rubber ball bouncing off a wall. The kinetic energy loss is relative to one body with respect to the other. Thus the total momentum of both bodies with respect to some common reference is unchanged after the collision, in line with the principle of conservation of momentum.

Friction

Friction due to surface microstructure imperfections Friction surface microstructure.png
Friction due to surface microstructure imperfections

Another important contact phenomenon is surface-to-surface friction, a force that impedes the relative motion of two surfaces in contact, or that of a body in a fluid. In this section we discuss surface-to-surface friction of two bodies in relative static contact or sliding contact. In the real world, friction is due to the imperfect microstructure of surfaces whose protrusions interlock into each other, generating reactive forces tangential to the surfaces.

To overcome the friction between two bodies in static contact, the surfaces must somehow lift away from each other. Once in motion, the degree of surface affinity is reduced and hence bodies in sliding motion tend to offer lesser resistance to motion. These two categories of friction are respectively termed static friction and dynamic friction.

Applied force

It is a force which is applied to an object by another object or by a person. The direction of the applied force depends on how the force is applied.

Normal force

It is the support force exerted upon an object which is in contact with another stable object. Normal force is sometimes referred to as the pressing force since its action presses the surface together. Normal force is always directed towards the object and acts perpendicularly with the applied force.

Frictional force

It is the force exerted by a surface as an object moves across it or makes an effort to move across it. The friction force opposes the motion of the object. Friction results when two surfaces are pressed together closely, causing attractive intermolecular forces between the molecules of the two different surface. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. Friction always acts parallel to the surface in contact and opposite the direction of motion. The friction force can be calculated using the equation.

Impulse-based contact model

A force , dependent on time , acting on a body of assumed constant mass for a time interval generates a change in the body’s momentum , where is the resulting change in velocity. The change in momentum, termed an impulse and denoted by is thus computed as

For fixed impulse , the equation suggests that , that is, a smaller time interval must be compensated by a stronger reaction force to achieve the same impulse. When modelling a collision between idealized rigid bodies, it is impractical to simulate the compression and expansion phases of the body geometry over the collision time interval. However, by assuming that a force can be found which is equal to everywhere except at , and such that the limit

exists and is equal to , the notion of instantaneous impulses may be introduced to simulate an instantaneous change in velocity after a collision.

Impulse-based reaction model

The application of impulses at the point of collision Collision response rigid impulse reaction.png
The application of impulses at the point of collision

The effect of the reaction force over the interval of collision may hence be represented by an instantaneous reaction impulse , computed as

By deduction from the principle of action and reaction, if the collision impulse applied by the first body on the second body at a contact point is , the counter impulse applied by the second body on the first is . The decomposition into the impulse magnitude and direction along the contact normal and its negation allows for the derivation of a formula to compute the change in linear and angular velocities of the bodies resulting from the collision impulses. In the subsequent formulas, is always assumed to point away from body 1 and towards body 2 at the contact point.

Assuming the collision impulse magnitude is given and using Newton's laws of motion the relation between the bodies' pre- and post- linear velocities are as follows

(1a)
(1b)

where, for the th body, is the pre-collision linear velocity, is the post-collision linear velocity.

Similarly for the angular velocities

(2a)
(2b)

where, for the th body, is the angular pre-collision velocity, is the angular post-collision velocity, is the inertia tensor in the world frame of reference, and is offset of the shared contact point from the centre of mass.

The velocities of the bodies at the point of contact may be computed in terms of the respective linear and angular velocities, using

(3)

for . The coefficient of restitution relates the pre-collision relative velocity of the contact point to the post-collision relative velocity along the contact normal as follows

(4)

Substituting equations (1a), (1b), (2a), (2b) and (3) into equation (4) and solving for the reaction impulse magnitude yields [1]

(5)

Computing impulse-based reaction

Thus, the procedure for computing the post-collision linear velocities and angular velocities is as follows:

  1. Compute the reaction impulse magnitude in terms of , , , , , , , and using equation (5)
  2. Compute the reaction impulse vector in terms of its magnitude and contact normal using .
  3. Compute new linear velocities in terms of old velocities , masses and reaction impulse vector using equations (1a) and (1b)
  4. Compute new angular velocities in terms of old angular velocities , inertia tensors and reaction impulse using equations (2a) and (2b)

Impulse-based friction model

Coulomb friction model - friction cone Collision response friction cone.png
Coulomb friction model - friction cone

One of the most popular models for describing friction is the Coulomb friction model. This model defines coefficients of static friction and dynamic friction such that . These coefficients describe the two types of friction forces in terms of the reaction forces acting on the bodies. More specifically, the static and dynamic friction force magnitudes are computed in terms of the reaction force magnitude as follows

(6a)
(6b)

The value defines a maximum magnitude for the friction force required to counter the tangential component of any external sum force applied on a relatively static body, such that it remains static. Thus, if the external force is large enough, static friction is unable to fully counter this force, at which point the body gains velocity and becomes subject to dynamic friction of magnitude acting against the sliding velocity.

The Coulomb friction model effectively defines a friction cone within which the tangential component of a force exerted by one body on the surface of another in static contact, is countered by an equal and opposite force such that the static configuration is maintained. Conversely, if the force falls outside the cone, static friction gives way to dynamic friction.

Given the contact normal and relative velocity of the contact point, a tangent vector , orthogonal to , may be defined such that

(7)

where is the sum of all external forces on the body. The multi-case definition of is required for robustly computing the actual friction force for both the general and particular states of contact. Informally, the first case computes the tangent vector along the relative velocity component perpendicular to the contact normal . If this component is zero, the second case derives in terms of the tangent component of the external force . If there is no tangential velocity or external forces, then no friction is assumed, and may be set to the zero vector. Thus, is computed as

(8)

Equations (6a), (6b), (7) and (8) describe the Coulomb friction model in terms of forces. By adapting the argument for instantaneous impulses, an impulse-based version of the Coulomb friction model may be derived, relating a frictional impulse , acting along the tangent , to the reaction impulse . Integrating (6a) and (6b) over the collision time interval yields

(9a)
(9b)

where is the magnitude of the reaction impulse acting along contact normal . Similarly, by assuming constant throughout the time interval, the integration of (8) yields

(10)

Equations (5) and (10) define an impulse-based contact model that is ideal for impulse-based simulations. When using this model, care must be taken in the choice of and as higher values may introduce additional kinetic energy into the system.

See also

Notes

Related Research Articles

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Force</span> Influence that can cause motion of an object

In physics, a force is an influence that causes the motion of an object with mass to change its velocity, i.e., to accelerate. It can be a push or a pull, always with magnitude and direction, making it a vector quantity. It is measured in the SI unit of newton (N) and represented by the symbol F.

<span class="mw-page-title-main">Friction</span> Force resisting sliding motion

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:

<span class="mw-page-title-main">Momentum</span> Property of a mass in motion

In Newtonian mechanics, momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is :

Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Work (physics)</span> Process of energy transfer to an object via force application through displacement

In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if when applied it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.

<span class="mw-page-title-main">Drag coefficient</span> Dimensionless parameter to quantify fluid resistance

In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.

In classical mechanics, impulse is the integral of a force, F, over the time interval, t, for which it acts. Since force is a vector quantity, impulse is also a vector quantity. Impulse applied to an object produces an equivalent vector change in its linear momentum, also in the resultant direction. The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram meter per second (kg⋅m/s). The corresponding English engineering unit is the pound-second (lbf⋅s), and in the British Gravitational System, the unit is the slug-foot per second (slug⋅ft/s).

<span class="mw-page-title-main">Rigid body dynamics</span> Study of the effects of forces on undeformable bodies

In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves circular motion of its parts. The equations of motion describe the movement of the center of mass of a body. In circular motion, the distance between the body and a fixed point on the surface remains the same.

<span class="mw-page-title-main">Dynamical friction</span> Gravitational loss of momentum and energy by bodies moving through surrounding matter

In astrophysics, dynamical friction or Chandrasekhar friction, sometimes called gravitational drag, is loss of momentum and kinetic energy of moving bodies through gravitational interactions with surrounding matter in space. It was first discussed in detail by Subrahmanyan Chandrasekhar in 1943.

In physics and engineering, a constitutive equation or constitutive relation is a relation between two physical quantities that is specific to a material or substance, and approximates the response of that material to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.

<span class="mw-page-title-main">Normal force</span> Force exerted on an object by a body with which it is in contact, and vice versa

In mechanics, the normal force is the component of a contact force that is perpendicular to the surface that an object contacts, as in Figure 1. In this instance normal is used in the geometric sense and means perpendicular, as opposed to the common language use of normal meaning "ordinary" or "expected". A person standing still on a platform is acted upon by gravity, which would pull them down towards the Earth's core unless there were a countervailing force from the resistance of the platform's molecules, a force which is named the "normal force".

In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.

The work of a force on a particle along a virtual displacement is known as the virtual work.

<span class="mw-page-title-main">Stokes flow</span> Type of fluid flow

Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.

A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector ; the dimension of the function's domain has no relation to the dimension of its range.

<span class="mw-page-title-main">Navier–Stokes existence and smoothness</span> Millennium Prize Problem

The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.

In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.

Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation. The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations. In doing so, expressions for various transport coefficients such as thermal conductivity and viscosity are obtained in terms of molecular parameters. Thus, Chapman–Enskog theory constitutes an important step in the passage from a microscopic, particle-based description to a continuum hydrodynamical one.

<span class="mw-page-title-main">Bouncing ball</span> Physics of bouncing balls

The physics of a bouncing ball concerns the physical behaviour of bouncing balls, particularly its motion before, during, and after impact against the surface of another body. Several aspects of a bouncing ball's behaviour serve as an introduction to mechanics in high school or undergraduate level physics courses. However, the exact modelling of the behaviour is complex and of interest in sports engineering.

References