Colloblast

Last updated

Colloblasts are unique, multicellular structures found in ctenophores. [1] They are widespread in the tentacles of these animals and are used to capture prey. Colloblasts consist of a collocyte containing a coiled spiral filament, internal granules and other organelles. [2]

Like the cnidocytes of cnidarians, colloblasts are discharged from the animals’ tentacles, and are used to capture prey. However, unlike cnidocytes, which are venomous cells, colloblasts contain adhesives which stick to, rather than sting the prey.

Form, function, and occurrence

Colloblasts were first described in 1844. [3]

The apical surface of colloblasts consist of numerous cap cells that secrete eosinophilic granules [1] that are thought to be the source of adhesion. [4] On contact, these granules rupture, and release an adhesive substance onto the prey. The spiral filament absorbs the impact of the rupture, preventing the ensnared prey from escaping. [5] Colloblasts are found in all ctenophores except those of the order Beroida, which lack tentacles, and the species Haeckelia rubra, which use cnidocytes from cnidarian prey. [5]

Related Research Articles

<span class="mw-page-title-main">Cnidaria</span> Aquatic animal phylum having cnydocytes

Cnidaria is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in freshwater and marine environments, predominantly the latter.

<span class="mw-page-title-main">Cnidocyte</span> Explosive cell containing one giant secretory organelle (cnida)

A cnidocyte is an explosive cell containing one large secretory organelle called a cnidocyst that can deliver a sting to other organisms. The presence of this cell defines the phylum Cnidaria. Cnidae are used to capture prey and as a defense against predators. A cnidocyte fires a structure that contains a toxin within the cnidocyst; this is responsible for the stings delivered by a cnidarian.

<span class="mw-page-title-main">Ctenophora</span> Phylum of gelatinous marine animals

Ctenophora comprise a phylum of marine invertebrates, commonly known as comb jellies, that inhabit sea waters worldwide. They are notable for the groups of cilia they use for swimming, and they are the largest animals to swim with the help of cilia.

<span class="mw-page-title-main">Nerve net</span>

A nerve net consists of interconnected neurons lacking a brain or any form of cephalization. While organisms with bilateral body symmetry are normally associated with a condensation of neurons or, in more advanced forms, a central nervous system, organisms with radial symmetry are associated with nerve nets, and are found in members of the Ctenophora, Cnidaria, and Echinodermata phyla, all of which are found in marine environments. In the Xenacoelomorpha, a phylum of bilaterally symmetrical animals, members of the subphylum Xenoturbellida also possess a nerve net. Nerve nets can provide animals with the ability to sense objects through the use of the sensory neurons within the nerve net.

<span class="mw-page-title-main">Beroidae</span> Family of comb jellies without tentacles

Beroidae is a family of ctenophores or comb jellies more commonly referred to as the beroids. It is the only family within the monotypic order Beroida and the class Nuda. They are distinguished from other comb jellies by the complete absence of tentacles, in both juvenile and adult stages. Species of the family Beroidae are found in all the world's oceans and seas and are free-swimmers that form part of the plankton.

<span class="mw-page-title-main">Muscle cell</span> Type of cell found in muscle tissue

A muscle cell is also known as a myocyte when referring to either a cardiac muscle cell (cardiomyocyte), or a smooth muscle cell as these are both small cells. A skeletal muscle cell is long and threadlike with many nuclei and is called a muscle fiber. Muscle cells develop from embryonic precursor cells called myoblasts.

<span class="mw-page-title-main">Tentacle</span> Varied organ found in many animals and used for palpation and manipulation

In zoology, a tentacle is a flexible, mobile, and elongated organ present in some species of animals, most of them invertebrates. In animal anatomy, tentacles usually occur in one or more pairs. Anatomically, the tentacles of animals work mainly like muscular hydrostats. Most forms of tentacles are used for grasping and feeding. Many are sensory organs, variously receptive to touch, vision, or to the smell or taste of particular foods or threats. Examples of such tentacles are the eyestalks of various kinds of snails. Some kinds of tentacles have both sensory and manipulatory functions.

<i>Chrysaora quinquecirrha</i> Species of jellyfish

The Atlantic sea nettle, also called the East Coast sea nettle in the United States, is a species of jellyfish that inhabits the Atlantic coast of the United States. Historically it was confused with several Chrysaora species, resulting in incorrect reports of C. quinquecirrha from other parts of the Atlantic and other oceans. Most recently, C. chesapeakei of estuaries on the Atlantic coast of the United States, as well as the Gulf of Mexico, was only fully recognized as separate from C. quinquecirrha in 2017. It is smaller than the Pacific sea nettle, and has more variable coloration, but is typically pale, pinkish or yellowish, often with radiating more deeply colored stripes on the exumbrella, especially near the margin.

<span class="mw-page-title-main">Coelenterata</span> Term encompassing animal phyla Cnidaria and Ctenophora

Coelenterata is a term encompassing the animal phyla Cnidaria and Ctenophora. The name comes from Ancient Greek κοῖλος (koîlos) 'hollow', and ἔντερον (énteron) 'intestine', referring to the hollow body cavity common to these two phyla. They have very simple tissue organization, with only two layers of cells, and radial symmetry. Some examples are corals, which are typically colonial, and hydrae, jellyfish, and sea anemones, which are solitary. Coelenterata lack a specialized circulatory system relying instead on diffusion across the tissue layers.

<i>Mnemiopsis</i> Genus of comb jellies

Mnemiopsis leidyi, the warty comb jelly or sea walnut, is a species of tentaculate ctenophore. It is native to western Atlantic coastal waters, but has become established as an invasive species in European and western Asian regions. Three species have been named in the genus Mnemiopsis, but they are now believed to be different ecological forms of a single species M. leidyi by most zoologists.

<span class="mw-page-title-main">Sea anemone</span> Marine animals of the order Actiniaria

Sea anemones are a group of predatory marine invertebrates of the order Actiniaria. Because of their colourful appearance, they are named after the Anemone, a terrestrial flowering plant. Sea anemones are classified in the phylum Cnidaria, class Anthozoa, subclass Hexacorallia. As cnidarians, sea anemones are related to corals, jellyfish, tube-dwelling anemones, and Hydra. Unlike jellyfish, sea anemones do not have a medusa stage in their life cycle.

<span class="mw-page-title-main">Planulozoa</span>

Planulozoa is a clade which includes the Placozoa, Cnidaria and the Bilateria. The designation Planulozoa may be considered a synonym to Parahoxozoa. Within Planulozoa, the Placozoa may be a sister of Cnidaria to the exclusion of Bilateria. The clade excludes basal animals such as the Ctenophora, and Porifera (sponges). Although this clade was sometimes used to specify a clade of Cnidaria and Bilateria to the exclusion of Placozoa, this is no longer favoured due to recent data indicating a sister group relationship between Cnidaria and Placozoa.

<span class="mw-page-title-main">Cydippida</span> Order of comb jellies with retractable branched tentacles

Cydippida is an order of comb jellies. They are distinguished from other comb jellies by their spherical or oval bodies, and the fact their tentacles are branched, and can be retracted into pouches on either side of the pharynx. The order is not monophyletic, that is, more than one common ancestor is believed to exist.

<span class="mw-page-title-main">Platyctenida</span> Order of benthic ctenophores

Platyctenida is an order of comb jellies.

<i>Pleurobrachia bachei</i> Species of comb jelly

Pleurobrachia bachei is a member of the phylum Ctenophora and is commonly referred to as the Pacific sea gooseberry. These comb jellies are often mistaken for medusoid Cnidaria, but lack stinging cells.

<i>Mertensia ovum</i> Species of comb jelly

Mertensia ovum, also known as the Arctic comb jelly or sea nut, is a cydippid comb jelly or ctenophore first described as Beroe ovum by Johan Christian Fabricius in 1780. It is the only species in the genus Mertensia. Unusually among ctenophores, which normally prefer warmer waters, it is found in the Arctic and adjacent polar seas, mostly in surface waters down to 50 metres (160 ft).

Collocyte is a term variously applied in botany and zoology to cells that produce gluey substances, or that bind or capture prey or assorted objects by securing them with gluey materials and structures, or that simply look smooth and gelatinous. Literally the word means "glue cell", and it has a number of poorly distinguished synonyms, such as colloblast.

<i>Pleurobrachia pileus</i> Species of comb jelly

Pleurobrachia pileus is a species of comb jelly, commonly known as a sea gooseberry. It is found in open water in the northern Atlantic Ocean, the North Sea, the Baltic Sea and the Black Sea, and was first described by the Danish zoologist Otto Friedrich Müller in 1776.

<i>Beroe abyssicola</i> Species of comb jelly

Beroe abyssicola is a species of beroid ctenophore, or comb jelly. It is largely found in deep waters in the North Pacific Ocean, and is common in Japan and the Arctic Ocean. A predator, Beroe feeds mostly on other ctenophores by swallowing them whole. Like other ctenophores, B. abyssicola has a simple nervous system in the form of a nerve net, which it uses to direct its movement, feeding, and hunting behaviors.

<i>Euplokamis</i> Genus of ctenophores

Euplokamis is a genus of ctenophores, or comb jellies, belonging to the monotypic family Euplokamididae. Despite living for hundreds of millions of years in marine environments, there is minimal research regarding Euplokamis, primarily due to their body structure. Research on the evolution of the basic body structures of diploblastic metazoans revealed that there are four major phyla, including the Ctenophores. Although the morphology of Euplokamis often resembles the medusa stage of Cnidarians, their eight rows of combs are one distinguishing feature that led to the official classification of Ctenophores. After being originally described by Chun (1879), the family Euplokamididae was expanded by Mills (1987) due to the discovery of a new species, Euplokamis dunlapae. Further research indicated that Euplokamis should be identified from Mertensiidae due to the rows of combs and some compression. They may also be distinguished from the genus Pleurobrachia due to their more elongated shape. Additionally, various adaptations of Euplokamis have been observed such as the use of tentacles for movement/feeding, a complex nervous system, and bioluminescent capabilities. Other characteristics including a defined mesoderm, lack of stinging cells, developmental differences, and symmetry supported the reclassification of these organisms.

References

  1. 1 2 Leonardi, N..D.; Thuesen, E.V.; Haddock, S.H.D. (2020). "A sticky thicket of glue cells: A comparative morphometric analysis of colloblasts in 20 species of comb jelly (Phylum Ctenophora)". Ciencias Marinas. 46 (4): 211–225. doi: 10.7773/cm.v46i4.3118 .
  2. Harrison, Frederick W.; Kohn, Alan J. (1996-12-06). Microscopic Anatomy of Invertebrates, Mollusca II. ISBN   978-0-471-15447-1.
  3. Mari-Luz, Hernandez-Nicaise (1984). "9.7: The integument of the tentacles: the colloblast". In Bereiter-Hahn, Jürgen; Matoltsy, A. Gedeon; Richards, K. Sylvia (eds.). Biology of the Integument Invertebrates. Berlin, Heidelberg: Springer. p. 107. ISBN   9783642515934.
  4. Franc, J.-M. (1978). "Organization and function of ctenophore colloblasts: An ultrastructural study". Biological Bulletin. 155 (3): 527–541. doi:10.2307/1540788. JSTOR   1540788.
  5. 1 2 Pang, K.; Martindale, M.Q. (2008). "Comb jellies (ctenophora): A model for basal metazoan evolution and development". Cold Spring Harbor Protocols . 2008 (12). pdb.emo106. doi:10.1101/pdb.emo106. PMID   21356709.