Color Wonder

Last updated

Color Wonder is a product made by Crayola, primarily intended for use by younger children, in which the special clear-ink marker only appears on the Color Wonder paper. Originally made with markers and paper, Color Wonder has also made specialty products including paints, etc. The Color Wonder products debuted in 1993. Color Wonder paints and finger paints, as well as Color Wonder coloring books of popular characters such as Disney Pixar's Cars and Disney Princess also exist.

The 'magic' clear-ink products were designed so that toddlers and young children don't stain their clothes, paint on the walls, etc. Crayola has a patent under Binney & Smith relating to this kind of mess-free marking system. [1] An applicator, such as a felt pen, uses a composition containing a colorless leuco dye that changes to color in the presence of acid. [2] The substrate in the Color Wonder paper contains zinc ions which trigger the development of color in the dyes when the marker inks are applied. [2] The zinc ions act as Lewis acids to drive the color-changing chemical reaction. [2]

Crayola has also another line similar to this one marketed towards older children, called Color Explosion. It is like Color Wonder, except that instead of chemicals on paper revealing the hidden color of the marker ink, the chemicals in the marker reveal stripes, dots, and swirls of color on the page. Depending on the package you get (Fire & Ice, Twisted Tropicals, etc.) the colors hidden in the paper are different. Color Explosion is also available in black and white paper.

Related Research Articles

<span class="mw-page-title-main">Ink</span> Liquid or paste that contains pigments or dyes

Ink is a gel, sol, or solution that contains at least one colorant, such as a dye or pigment, and is used to color a surface to produce an image, text, or design. Ink is used for drawing or writing with a pen, brush, reed pen, or quill. Thicker inks, in paste form, are used extensively in letterpress and lithographic printing.

Mass deacidification is a term used in library and information science as one possible measure against the degradation of paper in old books, the so-called "slow fires". The goal of the process is to increase the pH of acidic paper. Although acid-free paper has become more common, a large body of acidic paper still exists in books made after the 1850s; this is because of its cheaper and simpler production methods. Acidic paper, especially when exposed to light, air pollution, or high relative humidity, yellows and becomes brittle over time. During mass deacidification an alkaline agent is deposited in the paper to neutralize existing acid and prevent further decay. Mass deacidification is intended for objects on acidic paper that will be lost if no action is performed.

<span class="mw-page-title-main">Paint</span> Pigment applied over a surface that dries as a solid film

Paint is a material or mixture that, after applied to a solid material and allowed to dry, adds a film-like layer. As art, this is used to create an image, known as a painting. Paint can be made in many colors and types. Most paints are either oil-based or water-based, and each has distinct characteristics.

<span class="mw-page-title-main">Crayon</span> Stick made up of pigmented wax, used for writing or drawing

A crayon is a stick of pigmented wax used for writing or drawing. Wax crayons differ from pastels, in which the pigment is mixed with a dry binder such as gum arabic, and from oil pastels, where the binder is a mixture of wax and oil.

<span class="mw-page-title-main">Pigment</span> Colored material

A pigment is a powder used to add color or change visual appearance. Pigments are completely or nearly insoluble and chemically unreactive in water or another medium; in contrast, dyes are colored substances which are soluble or go into solution at some stage in their use. Dyes are often organic compounds whereas pigments are often inorganic. Pigments of prehistoric and historic value include ochre, charcoal, and lapis lazuli.

<span class="mw-page-title-main">Chemical industry</span> Industry (branch), which is engaged in the manufacturing of chemical products

The chemical industry comprises the companies and other organizations that develop and produce industrial, specialty and other chemicals. Central to the modern world economy, it converts raw materials into commodity chemicals for industrial and consumer products. It includes industries for petrochemicals such as polymers for plastics and synthetic fibers; inorganic chemicals such as acids and alkalis; agricultural chemicals such as fertilizers, pesticides and herbicides; and other categories such as industrial gases, speciality chemicals and pharmaceuticals.

<span class="mw-page-title-main">Crayola</span> American corporation

Crayola LLC, formerly the Binney & Smith Company, is an American manufacturing and retail company specializing in art supplies. It is known for its brand Crayola and best known for its crayons. The company is headquartered in Forks Township, Pennsylvania in the Lehigh Valley region of the state. Since 1984, Crayola has been a wholly owned subsidiary of Hallmark Cards.

Photographic processing or photographic development is the chemical means by which photographic film or paper is treated after photographic exposure to produce a negative or positive image. Photographic processing transforms the latent image into a visible image, makes this permanent and renders it insensitive to light.

<span class="mw-page-title-main">Phenolphthalein</span> pH indicator turning to colorless – in basic solution

Phenolphthalein ( feh-NOL(F)-thə-leen) is a chemical compound with the formula C20H14O4 and is often written as "HIn", "HPh", "phph" or simply "Ph" in shorthand notation. Phenolphthalein is often used as an indicator in acid–base titrations. For this application, it turns colorless in acidic solutions and pink in basic solutions. It belongs to the class of dyes known as phthalein dyes.

<span class="mw-page-title-main">Marker pen</span> Type of writing tool

A marker pen, fine liner, marking pen, felt-tip pen, felt pen, flowmarker, sign pen, vivid, flomaster, texta, sketch pen, koki or simply marker is a pen which has its own ink source and a tip made of porous, pressed fibers such as felt. A marker pen consists of a container and a core of an absorbent material that holds the ink. The upper part of the marker contains the nib that was made in earlier times of a hard felt material, and a cap to prevent the marker from drying out.

<span class="mw-page-title-main">Iron gall ink</span> Ink made from iron salts and tannic acids from vegetable sources

Iron gall ink is a purple-black or brown-black ink made from iron salts and tannic acids from vegetable sources. It was the standard ink formulation used in Europe for the 1400-year period between the 5th and 19th centuries, remained in widespread use well into the 20th century, and is still sold today.

In chemistry, chromism is a process that induces a change, often reversible, in the colors of compounds. In most cases, chromism is based on a change in the electron states of molecules, especially the π- or d-electron state, so this phenomenon is induced by various external stimuli which can alter the electron density of substances. It is known that there are many natural compounds that have chromism, and many artificial compounds with specific chromism have been synthesized to date. It is usually synonymous with chromotropism, the (reversible) change in color of a substance due to the physical and chemical properties of its ambient surrounding medium, such as temperature and pressure, light, solvent, and presence of ions and electrons.

<span class="mw-page-title-main">Fuchsine</span> Chemical compound

Fuchsine (sometimes spelled fuchsin) or rosaniline hydrochloride is a magenta dye with chemical formula C20H19N3·HCl. There are other similar chemical formulations of products sold as fuchsine, and several dozen other synonyms of this molecule.

<span class="mw-page-title-main">Industrial wastewater treatment</span> Processes used for treating wastewater that is produced by industries as an undesirable by-product

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans. This applies to industries that generate wastewater with high concentrations of organic matter, toxic pollutants or nutrients such as ammonia. Some industries install a pre-treatment system to remove some pollutants, and then discharge the partially treated wastewater to the municipal sewer system.

<span class="mw-page-title-main">Lead(II) acetate</span> Chemical compound

Lead(II) acetate is a white crystalline chemical compound with a slightly sweet taste. Its chemical formula is usually expressed as Pb(CH3COO)2 or Pb(OAc)2, where Ac represents the acetyl group. Like many other lead compounds, it causes lead poisoning. Lead acetate is soluble in water and glycerin. With water it forms the trihydrate, Pb(OAc)2·3H2O, a colourless or white efflorescent monoclinic crystalline substance.

<span class="mw-page-title-main">Thermal paper</span> Adding machine, cash register and credit card terminal paper

Thermal paper is a special fine paper that is coated with a material formulated to change color locally when exposed to heat. It is used in thermal printers, particularly in inexpensive devices such as adding machines, cash registers, and credit card terminals and small, lightweight portable printers.

The following is a partial timeline of Crayola's history. It covers the Crayola brand of marking utensils, as well as the history of Binney & Smith, the company that created the brand and is currently a subsidiary of Hallmark Cards known as Crayola LLC.

An oil drying agent, also known as siccative, is a coordination compound that accelerates (catalyzes) the hardening of drying oils, often as they are used in oil-based paints. This so-called "drying" occurs through free-radical chemical crosslinking of the oils. The catalysts promote this free-radical autoxidation of the oils with air.

<span class="mw-page-title-main">YInMn Blue</span> Inorganic blue pigment

YInMn Blue, also known as Oregon Blue or Mas Blue, is an inorganic blue pigment that was discovered by Mas Subramanian and his (then) graduate student, Andrew Smith, at Oregon State University in 2009. The pigment is noteworthy for its vibrant, near-perfect blue color and unusually high NIR reflectance. The chemical compound has a unique crystal structure in which trivalent manganese ions in the trigonal bipyramidal coordination are responsible for the observed intense blue color. Since the initial discovery, the fundamental principles of colour science have been explored extensively by the Subramanian research team at Oregon State University, resulting in a wide range of rationally designed novel green, purple, and orange pigments, all through intentional addition of a chromophore in the trigonal bipyramidal coordination environment.

<span class="mw-page-title-main">Synthetic colorant</span>


A colorant is any substance that changes the spectral transmittance or reflectance of a material. Synthetic colorants are those created in a laboratory or industrial setting. The production and improvement of colorants was a driver of the early synthetic chemical industry, in fact many of today's largest chemical producers started as dye-works in the late 19th or early 20th centuries, including Bayer AG(1863). Synthetics are extremely attractive for industrial and aesthetic purposes as they have they often achieve higher intensity and color fastness than comparable natural pigments and dyes used since ancient times. Market viable large scale production of dyes occurred nearly simultaneously in the early major producing countries Britain (1857), France (1858), Germany (1858), and Switzerland (1859), and expansion of associated chemical industries followed. The mid-nineteenth century through WWII saw an incredible expansion of the variety and scale of manufacture of synthetic colorants. Synthetic colorants quickly became ubiquitous in everyday life, from clothing to food. This stems from the invention of industrial research and development laboratories in the 1870s, and the new awareness of empirical chemical formulas as targets for synthesis by academic chemists. The dye industry became one of the first instances where directed scientific research lead to new products, and the first where this occurred regularly.

References

  1. U.S. Patent 5,460,647
  2. 1 2 3 Kuntzleman, Thomas S.; Campbell, Dean J. (2022-05-09). "The Chemical Wonders of No-Mess Markers". Journal of Chemical Education. 99 (6): 2364–2371. Bibcode:2022JChEd..99.2364K. doi:10.1021/acs.jchemed.2c00241. ISSN   0021-9584. S2CID   248683446.