Commutator collecting process

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia

In group theory, a branch of mathematics, the commutator collecting process is a method for writing an element of a group as a product of generators and their higher commutators arranged in a certain order. The commutator collecting process was introduced by Philip Hall in 1934 [1] and articulated by Wilhelm Magnus in 1937. [2] The process is sometimes called a "collection process".

Contents

The process can be generalized to define a totally ordered subset of a free non-associative algebra, that is, a free magma; this subset is called the Hall set. Members of the Hall set are binary trees; these can be placed in one-to-one correspondence with words, these being called the Hall words; the Lyndon words are a special case. Hall sets are used to construct a basis for a free Lie algebra, entirely analogously to the commutator collecting process. Hall words also provide a unique factorization of monoids.

Statement

The commutator collecting process is usually stated for free groups, as a similar theorem then holds for any group by writing it as a quotient of a free group.

Suppose F1 is a free group on generators a1, ..., am. Define the descending central series by putting

Fn+1 = [Fn, F1]

The basic commutators are elements of F1 defined and ordered as follows:

Commutators are ordered so that x > y if x has weight greater than that of y, and for commutators of any fixed weight some total ordering is chosen.

Then Fn/Fn+1 is a finitely generated free abelian group with a basis consisting of basic commutators of weight n.

Then any element of F can be written as

where the ci are the basic commutators of weight at most m arranged in order, and c is a product of commutators of weight greater than m, and the ni are integers.

See also

Related Research Articles

In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

Monoid Algebraic structure with an associative operation and an identity element

In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element.

Power set Mathematical set containing all subsets of a given set

In mathematics, the power set of a set S is the set of all subsets of S, including the empty set and S itself. In axiomatic set theory, the existence of the power set of any set is postulated by the axiom of power set. The powerset of S is variously denoted as P(S), 𝒫(S), P(S), , ℘(S), or 2S. The notation 2S, meaning the set of all functions from S to a given set of two elements, is used because the powerset of S can be identified with, equivalent to, or bijective to the set of all the functions from S to the given two elements set.

Semigroup

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation.

Free group

In mathematics, the free groupFS over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms. The members of S are called generators of FS, and the number of generators is the rank of the free group. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in exactly one way as a product of finitely many elements of S and their inverses.

In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

General linear group n x n invertible matrices over a ring

In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with identity matrix as the identity element of the group. The group is so named because the columns of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. It is a part of universal algebra, in the sense that it relates to all types of algebraic structure. It also has a formulation in terms of category theory, although this is in yet more abstract terms. Examples include free groups, tensor algebras, or free lattices. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure.

In category theory, a branch of mathematics, a monad is an endofunctor, together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories.

In mathematics, a universal enveloping algebra is the most general algebra that contains all representations of a Lie algebra.

In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set A is usually denoted A. The free semigroup on A is the subsemigroup of A containing all elements except the empty string. It is usually denoted A+.

In mathematics, a join-semilattice is a partially ordered set that has a join for any nonempty finite subset. Dually, a meet-semilattice is a partially ordered set which has a meet for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.

In mathematics, the Grothendieck group construction constructs an abelian group from a commutative monoid M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

In mathematics, a free Lie algebra over a field K is a Lie algebra generated by a set X, without any imposed relations other than the defining relations of alternating K-bilinearity and the Jacobi identity.

In algebra, a presentation of a monoid is a description of a monoid in terms of a set Σ of generators and a set of relations on the free monoid Σ generated by Σ. The monoid is then presented as the quotient of the free monoid by these relations. This is an analogue of a group presentation in group theory.

In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups.

In mathematics, in the areas of group theory and combinatorics, Hall words provide a unique monoid factorisation of the free monoid. They are also totally ordered, and thus provide a total order on the monoid. This is analogous to the better-known case of Lyndon words; in fact, the Lyndon words are a special case, and almost all properties possessed by Lyndon words carry over to Hall words. Hall words are in one-to-one correspondence with Hall trees. These are binary trees; taken together, they form the Hall set. This set is a particular totally ordered subset of a free non-associative algebra, that is, a free magma. In this form, the Hall trees provide a basis for free Lie algebras, and can be used to perform the commutations required by the Poincaré–Birkhoff–Witt theorem used in the construction of a universal enveloping algebra. As such, this generalizes the same process when done with the Lyndon words. Hall trees can also be used to give a total order to the elements of a group, via the commutator collecting process, which is a special case of the general construction given below. It can be shown that Lazard sets coincide with Hall sets.

References

  1. Hall, Philip (1934), "A contribution to the theory of groups of prime-power order", Proceedings of the London Mathematical Society, 36: 29–95, doi:10.1112/plms/s2-36.1.29
  2. W. Magnus (1937), "Über Beziehungen zwischen höheren Kommutatoren", J. Grelle177, 105-115.

Reading