In mathematics, a free Lie algebra over a field K is a Lie algebra generated by a set X, without any imposed relations other than the defining relations of alternating K-bilinearity and the Jacobi identity.
The definition of the free Lie algebra generated by a set X is as follows:
Given a set X, one can show that there exists a unique free Lie algebra generated by X.
In the language of category theory, the functor sending a set X to the Lie algebra generated by X is the free functor from the category of sets to the category of Lie algebras. That is, it is left adjoint to the forgetful functor.
The free Lie algebra on a set X is naturally graded. The 1-graded component of the free Lie algebra is just the free vector space on that set.
One can alternatively define a free Lie algebra on a vector space V as left adjoint to the forgetful functor from Lie algebras over a field K to vector spaces over the field K – forgetting the Lie algebra structure, but remembering the vector space structure.
The universal enveloping algebra of a free Lie algebra on a set X is the free associative algebra generated by X. By the Poincaré–Birkhoff–Witt theorem it is the "same size" as the symmetric algebra of the free Lie algebra (meaning that if both sides are graded by giving elements of X degree 1 then they are isomorphic as graded vector spaces). This can be used to describe the dimension of the piece of the free Lie algebra of any given degree.
Ernst Witt showed that the number of basic commutators of degree k in the free Lie algebra on an m-element set is given by the necklace polynomial:
where is the Möbius function.
The graded dual of the universal enveloping algebra of a free Lie algebra on a finite set is the shuffle algebra. This essentially follows because universal enveloping algebras have the structure of a Hopf algebra, and the shuffle product describes the action of comultiplication in this algebra. See tensor algebra for a detailed exposition of the inter-relation between the shuffle product and comultiplication.
An explicit basis of the free Lie algebra can be given in terms of a Hall set, which is a particular kind of subset inside the free magma on X. Elements of the free magma are binary trees, with their leaves labelled by elements of X. Hall sets were introduced by MarshallHall ( 1950 ) based on work of Philip Hall on groups. Subsequently, Wilhelm Magnus showed that they arise as the graded Lie algebra associated with the filtration on a free group given by the lower central series. This correspondence was motivated by commutator identities in group theory due to Philip Hall and Witt.
The Lyndon words are a special case of the Hall words, and so in particular there is a basis of the free Lie algebra corresponding to Lyndon words. This is called the Lyndon basis, named after Roger Lyndon. (This is also called the Chen–Fox–Lyndon basis or the Lyndon–Shirshov basis, and is essentially the same as the Shirshov basis.) There is a bijection γ from the Lyndon words in an ordered alphabet to a basis of the free Lie algebra on this alphabet defined as follows:
AnatolyŠiršov ( 1953 ) and Witt ( 1956 ) showed that any Lie subalgebra of a free Lie algebra is itself a free Lie algebra.
Serre's theorem on a semisimple Lie algebra uses a free Lie algebra to construct a semisimple algebra out of generators and relations.
The Milnor invariants of a link group are related to the free Lie algebra on the components of the link, as discussed in that article.
See also Lie operad for the use of a free Lie algebra in the construction of the operad.
In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.
In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices.
In mathematics, especially representation theory, a quiver is another name for a multidigraph; that is, a directed graph where loops and multiple arrows between two vertices are allowed. Quivers are commonly used in representation theory: a representation V of a quiver assigns a vector space V(x) to each vertex x of the quiver and a linear map V(a) to each arrow a.
In the mathematical fields of topology and K-theory, the Serre–Swan theorem, also called Swan's theorem, relates the geometric notion of vector bundles to the algebraic concept of projective modules and gives rise to a common intuition throughout mathematics: "projective modules over commutative rings are like vector bundles on compact spaces".
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra.
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra.
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.
In mathematics, the symmetric algebraS(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = g ∘ i, where i is the inclusion map of V in S(V).
In mathematics, more specifically in the theory of Lie algebras, the Poincaré–Birkhoff–Witt theorem is a result giving an explicit description of the universal enveloping algebra of a Lie algebra. It is named after Henri Poincaré, Garrett Birkhoff, and Ernst Witt.
In mathematics, a D-module is a module over a ring D of differential operators. The major interest of such D-modules is as an approach to the theory of linear partial differential equations. Since around 1970, D-module theory has been built up, mainly as a response to the ideas of Mikio Sato on algebraic analysis, and expanding on the work of Sato and Joseph Bernstein on the Bernstein–Sato polynomial.
In mathematics, in the areas of combinatorics and computer science, a Lyndon word is a nonempty string that is strictly smaller in lexicographic order than all of its rotations. Lyndon words are named after mathematician Roger Lyndon, who investigated them in 1954, calling them standard lexicographic sequences. Anatoly Shirshov introduced Lyndon words in 1953 calling them regular words. Lyndon words are a special case of Hall words; almost all properties of Lyndon words are shared by Hall words.
In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space, refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by Alexander Grothendieck (1961). Hironaka's example shows that non-projective varieties need not have Hilbert schemes.
In mathematics the differential calculus over commutative algebras is a part of commutative algebra based on the observation that most concepts known from classical differential calculus can be formulated in purely algebraic terms. Instances of this are:
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.
In mathematics, in the areas of group theory and combinatorics, Hall words provide a unique monoid factorisation of the free monoid. They are also totally ordered, and thus provide a total order on the monoid. This is analogous to the better-known case of Lyndon words; in fact, the Lyndon words are a special case, and almost all properties possessed by Lyndon words carry over to Hall words. Hall words are in one-to-one correspondence with Hall trees. These are binary trees; taken together, they form the Hall set. This set is a particular totally ordered subset of a free non-associative algebra, that is, a free magma. In this form, the Hall trees provide a basis for free Lie algebras, and can be used to perform the commutations required by the Poincaré–Birkhoff–Witt theorem used in the construction of a universal enveloping algebra. As such, this generalizes the same process when done with the Lyndon words. Hall trees can also be used to give a total order to the elements of a group, via the commutator collecting process, which is a special case of the general construction given below. It can be shown that Lazard sets coincide with Hall sets.
In group theory, a branch of mathematics, the commutator collecting process is a method for writing an element of a group as a product of generators and their higher commutators arranged in a certain order. The commutator collecting process was introduced by Philip Hall in 1934 and articulated by Wilhelm Magnus in 1937. The process is sometimes called a "collection process".
In mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself. If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X.