In mathematics, a graded Lie algebra is a Lie algebra endowed with a gradation which is compatible with the Lie bracket. In other words, a graded Lie algebra is a Lie algebra which is also a nonassociative graded algebra under the bracket operation. A choice of Cartan decomposition endows any semisimple Lie algebra with the structure of a graded Lie algebra. Any parabolic Lie algebra is also a graded Lie algebra.
A graded Lie superalgebra [1] extends the notion of a graded Lie algebra in such a way that the Lie bracket is no longer assumed to be necessarily anticommutative. These arise in the study of derivations on graded algebras, in the deformation theory of Murray Gerstenhaber, Kunihiko Kodaira, and Donald C. Spencer, and in the theory of Lie derivatives.
A supergraded Lie superalgebra [2] is a further generalization of this notion to the category of superalgebras in which a graded Lie superalgebra is endowed with an additional super -gradation. These arise when one forms a graded Lie superalgebra in a classical (non-supersymmetric) setting, and then tensorizes to obtain the supersymmetric analog. [3]
Still greater generalizations are possible to Lie algebras over a class of braided monoidal categories equipped with a coproduct and some notion of a gradation compatible with the braiding in the category. For hints in this direction, see Lie superalgebra#Category-theoretic definition.
In its most basic form, a graded Lie algebra is an ordinary Lie algebra , together with a gradation of vector spaces
such that the Lie bracket respects this gradation:
The universal enveloping algebra of a graded Lie algebra inherits the grading.
For example, the Lie algebra of trace-free 2 × 2 matrices is graded by the generators:
These satisfy the relations , , and . Hence with , , and , the decomposition presents as a graded Lie algebra.
The free Lie algebra on a set X naturally has a grading, given by the minimum number of terms needed to generate the group element. This arises for example as the associated graded Lie algebra to the lower central series of a free group.
If is any commutative monoid, then the notion of a -graded Lie algebra generalizes that of an ordinary (-) graded Lie algebra so that the defining relations hold with the integers replaced by . In particular, any semisimple Lie algebra is graded by the root spaces of its adjoint representation.
A graded Lie superalgebra over a field k (not of characteristic 2) consists of a graded vector space E over k, along with a bilinear bracket operation
such that the following axioms are satisfied.
Note, for instance, that when E carries the trivial gradation, a graded Lie superalgebra over k is just an ordinary Lie algebra. When the gradation of E is concentrated in even degrees, one recovers the definition of a (Z-)graded Lie algebra.
The most basic example of a graded Lie superalgebra occurs in the study of derivations of graded algebras. If A is a graded k-algebra with gradation
then a graded k-derivation d on A of degree l is defined by
The space of all graded derivations of degree l is denoted by , and the direct sum of these spaces,
carries the structure of an A-module. This generalizes the notion of a derivation of commutative algebras to the graded category.
On Der(A), one can define a bracket via:
Equipped with this structure, Der(A) inherits the structure of a graded Lie superalgebra over k.
Further examples:
The notion of a graded Lie superalgebra can be generalized so that their grading is not just the integers. Specifically, a signed semiring consists of a pair , where is a semiring and is a homomorphism of additive groups. Then a graded Lie supalgebra over a signed semiring consists of a vector space E graded with respect to the additive structure on , and a bilinear bracket [-, -] which respects the grading on E and in addition satisfies:
Further examples:
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. The vector space together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance, and orientation. Every non-trivial rotation is determined by its axis of rotation and its angle of rotation. Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the definition of a rotation. Owing to the above properties, the set of all rotations is a group under composition. Rotations are not commutative, making it a nonabelian group. Moreover, the rotation group has a natural structure as a manifold for which the group operations are smoothly differentiable; so it is in fact, a Lie group. It is compact and has dimension 3.
In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2-grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the even elements of the superalgebra correspond to bosons and odd elements to fermions.
In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.
In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra.
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.
In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.
The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.
In mathematical physics, the gamma matrices, , also known as the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(). It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin-1/2 particles.
In differential geometry, a discipline within mathematics, a distribution on a manifold is an assignment of vector subspaces satisfying certain properties. In the most common situations, a distribution is asked to be a vector subbundle of the tangent bundle .
In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with distance and time coordinates.
In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.
In mathematics, the term “graded” has a number of meanings, mostly related:
In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when { and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.
This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.