In algebra, a parabolic Lie algebra is a subalgebra of a semisimple Lie algebra satisfying one of the following two conditions:
These conditions are equivalent over an algebraically closed field of characteristic zero, such as the complex numbers. If the field is not algebraically closed, then the first condition is replaced by the assumption that
where is the algebraic closure of .
For the general linear Lie algebra , a parabolic subalgebra is the stabilizer of a partial flag of , i.e. a sequence of nested linear subspaces. For a complete flag, the stabilizer gives a Borel subalgebra. For a single linear subspace , one gets a maximal parabolic subalgebra , and the space of possible choices is the Grassmannian .
In general, for a complex simple Lie algebra , parabolic subalgebras are in bijection with subsets of simple roots, i.e. subsets of the nodes of the Dynkin diagram.
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .
In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called lower triangular if all the entries above the main diagonal are zero. Similarly, a square matrix is called upper triangular if all the entries below the main diagonal are zero.
In mathematics, a generalized flag variety is a homogeneous space whose points are flags in a finite-dimensional vector space V over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth or complex manifold, called a real or complexflag manifold. Flag varieties are naturally projective varieties.
In mathematics, particularly in linear algebra, a flag is an increasing sequence of subspaces of a finite-dimensional vector space V. Here "increasing" means each is a proper subspace of the next :
In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .
In the theory of algebraic groups, a Borel subgroup of an algebraic group G is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group GLn, the subgroup of invertible upper triangular matrices is a Borel subgroup.
In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry. It was developed in the late 1940s by Shiing-Shen Chern and André Weil, in the wake of proofs of the generalized Gauss–Bonnet theorem. This theory was an important step in the theory of characteristic classes.
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.
In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.
In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if is a finite-dimensional representation of a solvable Lie algebra, then there's a flag of invariant subspaces of with , meaning that for each and i.
In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.
In mathematics, the Duflo isomorphism is an isomorphism between the center of the universal enveloping algebra of a finite-dimensional Lie algebra and the invariants of its symmetric algebra. It was introduced by Michel Duflo and later generalized to arbitrary finite-dimensional Lie algebras by Kontsevich.
In mathematics, Borel–de Siebenthal theory describes the closed connected subgroups of a compact Lie group that have maximal rank, i.e. contain a maximal torus. It is named after the Swiss mathematicians Armand Borel and Jean de Siebenthal who developed the theory in 1949. Each such subgroup is the identity component of the centralizer of its center. They can be described recursively in terms of the associated root system of the group. The subgroups for which the corresponding homogeneous space has an invariant complex structure correspond to parabolic subgroups in the complexification of the compact Lie group, a reductive algebraic group.
In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.
This is a glossary of representation theory in mathematics.
In mathematics, specifically in representation theory, a Borel subalgebra of a Lie algebra is a maximal solvable subalgebra. The notion is named after Armand Borel.
This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.
In mathematics, a complex Lie algebra is a Lie algebra over the complex numbers.
In mathematics, and especially differential geometry and algebraic geometry, a stable principal bundle is a generalisation of the notion of a stable vector bundle to the setting of principal bundles. The concept of stability for principal bundles was introduced by Annamalai Ramanathan for the purpose of defining the moduli space of G-principal bundles over a Riemann surface, a generalisation of earlier work by David Mumford and others on the moduli spaces of vector bundles.