Compact complement topology

Last updated

In mathematics, the compact complement topology is a topology defined on the set of real numbers, defined by declaring a subset open if and only if it is either empty or its complement is compact in the standard Euclidean topology on .

Mathematics field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

In topology and related branches of mathematics, a topological space may be defined as a set of points, along with a set of neighbourhoods for each point, satisfying a set of axioms relating points and neighbourhoods. The definition of a topological space relies only upon set theory and is the most general notion of a mathematical space that allows for the definition of concepts such as continuity, connectedness, and convergence. Other spaces, such as manifolds and metric spaces, are specializations of topological spaces with extra structures or constraints. Being so general, topological spaces are a central unifying notion and appear in virtually every branch of modern mathematics. The branch of mathematics that studies topological spaces in their own right is called point-set topology or general topology.

In mathematics, a set A is a subset of a set B, or equivalently B is a superset of A, if A is "contained" inside B, that is, all elements of A are also elements of B. A and B may coincide. The relationship of one set being a subset of another is called inclusion or sometimes containment. A is a subset of B may also be expressed as B includes A; or A is included in B.

Related Research Articles

In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one talks about the product in category theory, which formalizes these notions.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

The Baire category theorem (BCT) is an important tool in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space.

Interior (topology) interior of a subset S of points of a topological space X consists of all points of S that do not belong to the boundary of S

In mathematics, specifically in topology, the interior of a subset S of points of a topological space X consists of all points of S that do not belong to the boundary of S. A point that is in the interior of S is an interior point of S.

In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named for the Russian mathematician Pavel Alexandrov.

General topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

In mathematics, a Baire space is a topological space such that every intersection of a countable collection of open dense sets in the space is also dense. Complete metric spaces and locally compact Hausdorff spaces are examples of Baire spaces according to the Baire category theorem. The spaces are named in honor of René-Louis Baire who introduced the concept.

Zariski topology coarse topology defined on algebraic varieties and schemes

In algebraic geometry and commutative algebra, the Zariski topology is a topology on algebraic varieties, introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring a topological space, called the spectrum of the ring.

In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

In mathematics, the lower limit topology or right half-open interval topology is a topology defined on the set of real numbers; it is different from the standard topology on and has a number of interesting properties. It is the topology generated by the basis of all half-open intervals [a,b), where a and b are real numbers.

Pontryagin duality theorem

In mathematics, specifically in harmonic analysis and the theory of topological groups, Pontryagin duality explains the general properties of the Fourier transform on locally compact abelian groups, such as , the circle, or finite cyclic groups. The Pontryagin duality theorem itself states that locally compact abelian groups identify naturally with their bidual.

In mathematics, the support of a real-valued function f is the subset of the domain containing those elements which are not mapped to zero. If the domain of f is a topological space, the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis.

In mathematics, a cofinite subset of a set X is a subset A whose complement in X is a finite set. In other words, A contains all but finitely many elements of X. If the complement is not finite, but it is countable, then one says the set is cocountable.

In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology.

In mathematics, in the field of potential theory, the fine topology is a natural topology for setting the study of subharmonic functions. In the earliest studies of subharmonic functions, namely those for which where is the Laplacian, only smooth functions were considered. In that case it was natural to consider only the Euclidean topology, but with the advent of upper semi-continuous subharmonic functions introduced by F. Riesz, the fine topology became the more natural tool in many situations.

In mathematics, the partition topology is a topology that can be induced on any set X by partitioning X into disjoint subsets P; these subsets form the basis for the topology. There are two important examples which have their own names:

In mathematics, the Moore plane, also sometimes called Niemytzki plane, is a topological space. It is a completely regular Hausdorff space that is not normal. It is named after Robert Lee Moore and Viktor Vladimirovich Nemytskii.

In mathematics, a topological space X is said to be limit point compact or weakly countably compact if every infinite subset of X has a limit point in X. This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent.

In mathematics, the concept of a generalised metric is a generalisation of that of a metric, in which the distance is not a real number but taken from an arbitrary ordered field.

Knaster–Kuratowski fan

In topology, a branch of mathematics, the Knaster–Kuratowski fan is a specific connected topological space with the property that the removal of a single point makes it totally disconnected. It is also known as Cantor's leaky tent or Cantor's teepee, depending on the presence or absence of the apex.

References

<i>Counterexamples in Topology</i> book by Lynn Steen

Counterexamples in Topology is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr.

Dover Publications, also known as Dover Books, is an American book publisher founded in 1941 by Hayward Cirker and his wife, Blanche. It primarily publishes reissues, books no longer published by their original publishers. These are often, but not always, books in the public domain. The original published editions may be scarce or historically significant. Dover republishes these books, making them available at a significantly reduced cost.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.