In mathematics, the notion of being compactly embedded expresses the idea that one set or space is "well contained" inside another. There are versions of this concept appropriate to general topology and functional analysis.
Let (X, T) be a topological space, and let V and W be subsets of X. We say that V is compactly embedded in W, and write V ⊂⊂ W, if
Let X and Y be two normed vector spaces with norms ||•||X and ||•||Y respectively, and suppose that X ⊆ Y. We say that X is compactly embedded in Y, and write X ⊂⊂ Y or X ⋐ Y, if
If Y is a Banach space, an equivalent definition is that the embedding operator (the identity) i : X → Y is a compact operator.
When applied to functional analysis, this version of compact embedding is usually used with Banach spaces of functions. Several of the Sobolev embedding theorems are compact embedding theorems. When an embedding is not compact, it may possess a related, but weaker, property of cocompactness.
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure and the linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous or unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.
In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Other well-known examples of TVSs include Banach spaces, Hilbert spaces and Sobolev spaces.
In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator T : X → Y between two Banach spaces with finite-dimensional kernel and finite-dimensional (algebraic) cokernel , and with closed range . The last condition is actually redundant.
In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of . Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces.
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:
In mathematical analysis, a C0-semigroup, also known as a strongly continuous one-parameter semigroup, is a generalization of the exponential function. Just as exponential functions provide solutions of scalar linear constant coefficient ordinary differential equations, strongly continuous semigroups provide solutions of linear constant coefficient ordinary differential equations in Banach spaces. Such differential equations in Banach spaces arise from e.g. delay differential equations and partial differential equations.
In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded.
In mathematics, a locally integrable function is a function which is integrable on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to Lp spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain : in other words, locally integrable functions can grow arbitrarily fast at the domain boundary, but are still manageable in a way similar to ordinary integrable functions.
In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others. They are named after Sergei Lvovich Sobolev.
In mathematics, Ehrling's lemma, also known as Lions' lemma, is a result concerning Banach spaces. It is often used in functional analysis to demonstrate the equivalence of certain norms on Sobolev spaces. It was named after Gunnar Ehrling.
In mathematics, one normed vector space is said to be continuously embedded in another normed vector space if the inclusion function between them is continuous. In some sense, the two norms are "almost equivalent", even though they are not both defined on the same space. Several of the Sobolev embedding theorems are continuous embedding theorems.
In mathematics, the Rellich–Kondrachov theorem is a compact embedding theorem concerning Sobolev spaces. It is named after the Austrian-German mathematician Franz Rellich and the Russian mathematician Vladimir Iosifovich Kondrashov. Rellich proved the L2 theorem and Kondrashov the Lp theorem.
In mathematics, the trace operator extends the notion of the restriction of a function to the boundary of its domain to "generalized" functions in a Sobolev space. This is particularly important for the study of partial differential equations with prescribed boundary conditions, where weak solutions may not be regular enough to satisfy the boundary conditions in the classical sense of functions.
In mathematics, the Aubin–Lions lemma is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions, then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution.
In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.
This is a glossary for the terminology in a mathematical field of functional analysis.
In mathematics, a normalized solution to an ordinary or partial differential equation is a solution with prescribed norm, that is, a solution which satisfies a condition like In this article, the normalized solution is introduced by using the nonlinear Schrödinger equation. The nonlinear Schrödinger equation (NLSE) is a fundamental equation in quantum mechanics and other various fields of physics, describing the evolution of complex wave functions. In Quantum Physics, normalization means that the total probability of finding a quantum particle anywhere in the universe is unity.
In mathematics, a normalized solution to an ordinary or partial differential equation is a solution with prescribed norm, that is, a solution which satisfies a condition like In this article, the normalized solution is introduced by using the nonlinear Schrödinger equation. The nonlinear Schrödinger equation (NLSE) is a fundamental equation in quantum mechanics and other various fields of physics, describing the evolution of complex wave functions. In Quantum Physics, normalization means that the total probability of finding a quantum particle anywhere in the universe is unity.