Complete active space perturbation theory

Last updated
sketch showing the interdependence of some multi-reference wavefunction methods, indicating the dependency on CASSCF of CASPTn method A qualitative sketch of multi-reference wavefunction methods.png
sketch showing the interdependence of some multi-reference wavefunction methods, indicating the dependency on CASSCF of CASPTn method

Complete active space perturbation theory (CASPTn) is a multireference electron correlation method for computational investigation of molecular systems, especially for those with heavy atoms such as transition metals, lanthanides, and actinides. It can be used, for instance, to describe electronic states of a system, when single reference methods and density functional theory cannot be used, and for heavy atom systems for which quasi-relativistic approaches are not appropriate. [1]

Although perturbation methods such as CASPTn are successful in describing the molecular systems, they still need a Hartree-Fock wavefunction to provide a valid starting point. The perturbation theories cannot reach convergence if the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are degenerate. Therefore, the CASPTn method is usually used in conjunction with the Multi-configurational self-consistent field method (MCSCF) to avoid near-degeneracy correlation effects. [2]

History

In the early 1960s, the perturbation theory in quantum chemical applications was introduced. Since, there has been a wide spread of uses of the theory through software such as Gaussian. The perturbation theory correlation method is used routinely by the non-specialists. This is because it can easily achieve the property of size extensivity comparing to other correlation methods.

During the starting point of the uses of perturbation theory, the applications using the method were based on nondegenerate many-body perturbation theory (MBPT). MBPT is a reasonable method for atomic and molecular system which a single non-degenerate Slater determinant can represent zeroth-order electronic description. Therefore, MBPT method would exclude atomic and molecular states, especially excited states, which cannot be represented in zeroth order as single Slater determinants. Moreover, the perturbation expansion would converges very slowly or not at all if the state is degenerate or near degenerate. Such degenerate states are often the case of atomic and molecular valence states. To counter the restrictions, there was an attempt to implement second-order perturbation theory in conjunction with complete active space self-consistent field (CASSCF) wave functions. [3] At the time, it was rather difficult to compute three- and four-particle density matrices which are needed for matrix elements involving internal and semi-internal excitations. The results was rather disappointing with little or no improvement from usual CASSCF results. Another attempt was made in 1990, where the full interacting space was included in the first-order wave function while zeroth-order Hamiltonian was constructed from a Fock-type one-electron operator. [4] For cases which has no active orbitals, the Fock-type one-electron operator that reduces to the Møller–Plesset-Plesset Hartree-Fock (HF) operator. A diagonal Fock operator was also used to make a computer implementation simple and effective. [5]

Related Research Articles

A linear combination of atomic orbitals or LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in quantum chemistry. In quantum mechanics, electron configurations of atoms are described as wavefunctions. In a mathematical sense, these wave functions are the basis set of functions, the basis functions, which describe the electrons of a given atom. In chemical reactions, orbital wavefunctions are modified, i.e. the electron cloud shape is changed, according to the type of atoms participating in the chemical bond.

In computational physics and chemistry, the Hartree–Fock (HF) method is a method of approximation for the determination of the wave function and the energy of a quantum many-body system in a stationary state.

In the Hartree–Fock method of quantum mechanics, the Fock matrix is a matrix approximating the single-electron energy operator of a given quantum system in a given set of basis vectors. It is most often formed in computational chemistry when attempting to solve the Roothaan equations for an atomic or molecular system. The Fock matrix is actually an approximation to the true Hamiltonian operator of the quantum system. It includes the effects of electron-electron repulsion only in an average way. Because the Fock operator is a one-electron operator, it does not include the electron correlation energy.

Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post–Hartree–Fock ab initio methods in the field of computational chemistry. It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order. Its main idea was published as early as 1934 by Christian Møller and Milton S. Plesset.

Configuration interaction (CI) is a post-Hartree–Fock linear variational method for solving the nonrelativistic Schrödinger equation within the Born–Oppenheimer approximation for a quantum chemical multi-electron system. Mathematically, configuration simply describes the linear combination of Slater determinants used for the wave function. In terms of a specification of orbital occupation (for instance, (1s)2(2s)2(2p)1...), interaction means the mixing (interaction) of different electronic configurations (states). Due to the long CPU time and large memory required for CI calculations, the method is limited to relatively small systems.

Per-Olov Löwdin was a Swedish physicist, professor at the University of Uppsala from 1960 to 1983, and in parallel at the University of Florida until 1993.

Electronic correlation is the interaction between electrons in the electronic structure of a quantum system. The correlation energy is a measure of how much the movement of one electron is influenced by the presence of all other electrons.

Multi-configurational self-consistent field (MCSCF) is a method in quantum chemistry used to generate qualitatively correct reference states of molecules in cases where Hartree–Fock and density functional theory are not adequate. It uses a linear combination of configuration state functions (CSF), or configuration determinants, to approximate the exact electronic wavefunction of an atom or molecule. In an MCSCF calculation, the set of coefficients of both the CSFs or determinants and the basis functions in the molecular orbitals are varied to obtain the total electronic wavefunction with the lowest possible energy. This method can be considered a combination between configuration interaction and Hartree–Fock.

In computational chemistry, post–Hartree–Fock (post-HF) methods are the set of methods developed to improve on the Hartree–Fock (HF), or self-consistent field (SCF) method. They add electron correlation which is a more accurate way of including the repulsions between electrons than in the Hartree–Fock method where repulsions are only averaged.

Koopmans' theorem states that in closed-shell Hartree–Fock theory (HF), the first ionization energy of a molecular system is equal to the negative of the orbital energy of the highest occupied molecular orbital (HOMO). This theorem is named after Tjalling Koopmans, who published this result in 1934.

Full configuration interaction is a linear variational approach which provides numerically exact solutions to the electronic time-independent, non-relativistic Schrödinger equation.

Restricted open-shell Hartree–Fock (ROHF) is a variant of Hartree–Fock method for open shell molecules. It uses doubly occupied molecular orbitals as far as possible and then singly occupied orbitals for the unpaired electrons. This is the simple picture for open shell molecules but it is difficult to implement. The foundations of the ROHF method were first formulated by Clemens C. J. Roothaan in a celebrated paper and then extended by various authors, see e.g. for in-depth discussions.

<span class="mw-page-title-main">MOLCAS</span> Computational chemistry software

MOLCAS is an ab initio computational chemistry program, developed as a joint project by a number of international institutes. MOLCAS is developed by scientists to be used by scientists. It is not primarily a commercial product and it is not sold in order to produce a fortune for its owner.

In quantum chemistry, n-electron valence state perturbation theory (NEVPT) is a perturbative treatment applicable to multireference CASCI-type wavefunctions. It can be considered as a generalization of the well-known second-order Møller–Plesset perturbation theory to multireference Complete Active Space cases. The theory is directly integrated into many quantum chemistry packages such as MOLCAS, Molpro, DALTON, PySCF and ORCA.

In quantum chemistry, size consistency and size extensivity are concepts relating to how the behaviour of quantum chemistry calculations changes with size. Size consistency is a property that guarantees the consistency of the energy behaviour when interaction between the involved molecular system is nullified. Size-extensivity, introduced by Bartlett, is a more mathematically formal characteristic which refers to the correct (linear) scaling of a method with the number of electrons.

<span class="mw-page-title-main">Spartan (chemistry software)</span>

Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1. Quantum chemistry calculations in Spartan are powered by Q-Chem.

Computational chemical methods in solid-state physics follow the same approach as they do for molecules, but with two differences. First, the translational symmetry of the solid has to be utilised, and second, it is possible to use completely delocalised basis functions such as plane waves as an alternative to the molecular atom-centered basis functions. The electronic structure of a crystal is in general described by a band structure, which defines the energies of electron orbitals for each point in the Brillouin zone. Ab initio and semi-empirical calculations yield orbital energies, therefore they can be applied to band structure calculations. Since it is time-consuming to calculate the energy for a molecule, it is even more time-consuming to calculate them for the entire list of points in the Brillouin zone.

Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants. Ab initio quantum chemistry methods attempt to solve the electronic Schrödinger equation given the positions of the nuclei and the number of electrons in order to yield useful information such as electron densities, energies and other properties of the system. The ability to run these calculations has enabled theoretical chemists to solve a range of problems and their importance is highlighted by the awarding of the Nobel prize to John Pople and Walter Kohn.

<span class="mw-page-title-main">Nuclear structure</span> Structure of the atomic nucleus

Understanding the structure of the atomic nucleus is one of the central challenges in nuclear physics.

In computational chemistry, spin contamination is the artificial mixing of different electronic spin-states. This can occur when an approximate orbital-based wave function is represented in an unrestricted form – that is, when the spatial parts of α and β spin-orbitals are permitted to differ. Approximate wave functions with a high degree of spin contamination are undesirable. In particular, they are not eigenfunctions of the total spin-squared operator, Ŝ2, but can formally be expanded in terms of pure spin states of higher multiplicities.

References

  1. Abe, M.; Gopakmar, G.; Hirao, K. (2008). "Relativistic multireference perturbation theory: complete active-space second-order perturbation theory (CASPT2) with the four-component Dirac Hamiltonian". Radiation Induced Molecular Phenomena in Nucleic Acids. Challenges and Advances in Computational Chemistry and Physics. 5: 157–177. doi:10.1007/978-1-4020-8184-2_6. ISBN   978-1-4020-8183-5.
  2. Anderson, K. (20 September 1994). "Different forms of the zeroth-order Hamiltonian in second-order perturbation theory with a complete active space self-consistent field reference function". Theor Chim Acta. 91 (1–2): 31–46. doi:10.1007/BF01113860. S2CID   94997253.
  3. Roos, B.; Linse, P.; Siegbahn, P. E. M.; Blomberg, M. R. A. (1982). "A simple method for the evaluation of the second-order-perturbation energy from external double-excitations with a CASSCF reference wavefunction". Chemical Physics. 66 (1–2): 197–207. Bibcode:1982CP.....66..197R. doi:10.1016/0301-0104(82)88019-1.
  4. Anderson, K.; Malmqvist, P.; Roos, B.; Wolinski, K. (1990). "Second-order perturbation theory with a CASSCF reference function". The Journal of Physical Chemistry. 94 (14): 5483–5488. doi:10.1021/j100377a012.
  5. Anderson, K.; Malmqvist, P.; Roos, B. (15 January 1992). "Second-order perturbation theory with a complete active space self-consistent field reference function". The Journal of Chemical Physics. 96 (2): 1218–1226. Bibcode:1992JChPh..96.1218A. doi: 10.1063/1.462209 .