Completely regular semigroup

Last updated

In mathematics, a completely regular semigroup is a semigroup in which every element is in some subgroup of the semigroup. The class of completely regular semigroups forms an important subclass of the class of regular semigroups, the class of inverse semigroups being another such subclass. Alfred H. Clifford was the first to publish a major paper on completely regular semigroups though he used the terminology "semigroups admitting relative inverses" to refer to such semigroups. [1] The name "completely regular semigroup" stems from Lyapin's book on semigroups. [2] [3] In the Russian literature, completely regular semigroups are often called "Clifford semigroups". [4] In the English literature, the name "Clifford semigroup" is used synonymously to "inverse Clifford semigroup", and refers to a completely regular inverse semigroup. [5] In a completely regular semigroup, each Green H-class is a group and the semigroup is the union of these groups. [6] Hence completely regular semigroups are also referred to as "unions of groups". Epigroups generalize this notion and their class includes all completely regular semigroups.

Contents

Examples

"While there is an abundance of natural examples of inverse semigroups, for completely regular semigroups the examples (beyond completely simple semigroups) are mostly artificially constructed: the minimum ideal of a finite semigroup is completely simple, and the various relatively free completely regular semigroups are the other more or less natural examples." [7]

See also

Related Research Articles

Semigroup

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation.

In abstract algebra, the idea of an inverse element generalises the concepts of negation and reciprocation. The intuition is of an element that can 'undo' the effect of combination with another given element. While the precise definition of an inverse element varies depending on the algebraic structure involved, these definitions coincide in a group.

Generating set of a group Subset of a group such that all group elements can be expressed by finitely many group operations on its elements

In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination of finitely many elements of the subset and their inverses.

In mathematics, function composition is an operation that takes two functions f and g and produces a function h such that h(x) = g(f ). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : XY and g : YZ are composed to yield a function that maps x in X to g(f ) in Z.

In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In mathematics, Green's relations are five equivalence relations that characterise the elements of a semigroup in terms of the principal ideals they generate. The relations are named for James Alexander Green, who introduced them in a paper of 1951. John Mackintosh Howie, a prominent semigroup theorist, described this work as "so all-pervading that, on encountering a new semigroup, almost the first question one asks is 'What are the Green relations like?'". The relations are useful for understanding the nature of divisibility in a semigroup; they are also valid for groups, but in this case tell us nothing useful, because groups always have divisibility.

In mathematics, the bicyclic semigroup is an algebraic object important for the structure theory of semigroups. Although it is in fact a monoid, it is usually referred to as simply a semigroup. It is perhaps most easily understood as the syntactic monoid describing the Dyck language of balanced pairs of parentheses. Thus, it finds common applications in combinatorics, such as describing binary trees and associative algebras.

Inverse semigroup

In group theory, an inverse semigroupS is a semigroup in which every element x in S has a unique inversey in S in the sense that x = xyx and y = yxy, i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries.

In mathematics, a band is a semigroup in which every element is idempotent. Bands were first studied and named by A. H. Clifford (1954); the lattice of varieties of bands was described independently in the early 1970s by Biryukov, Fennemore and Gerhard. Semilattices, left-zero bands, right-zero bands, rectangular bands, normal bands, left-regular bands, right-regular bands and regular bands, specific subclasses of bands that lie near the bottom of this lattice, are of particular interest and are briefly described below.

In mathematics, a regular semigroup is a semigroup S in which every element is regular, i.e., for each element a in S there exists an element x in S such that axa = a. Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations.

In mathematics, an automatic semigroup is a finitely generated semigroup equipped with several regular languages over an alphabet representing a generating set. One of these languages determines "canonical forms" for the elements of the semigroup, the other languages determine if two canonical forms represent elements that differ by multiplication by a generator.

In algebra, a transformation semigroup is a collection of functions from a set to itself that is closed under function composition. If it includes the identity function, it is a monoid, called a transformationmonoid. This is the semigroup analogue of a permutation group.

In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups.

In mathematics, in semigroup theory, a Rees factor semigroup, named after David Rees, is a certain semigroup constructed using a semigroup and an ideal of the semigroup.

In mathematics, a semigroup with no elements is a semigroup in which the underlying set is the empty set. Many authors do not admit the existence of such a semigroup. For them a semigroup is by definition a non-empty set together with an associative binary operation. However not all authors insist on the underlying set of a semigroup being non-empty. One can logically define a semigroup in which the underlying set S is empty. The binary operation in the semigroup is the empty function from S × S to S. This operation vacuously satisfies the closure and associativity axioms of a semigroup. Not excluding the empty semigroup simplifies certain results on semigroups. For example, the result that the intersection of two subsemigroups of a semigroup T is a subsemigroup of T becomes valid even when the intersection is empty.

In mathematics, Nambooripad order is a certain natural partial order on a regular semigroup discovered by K S S Nambooripad in late seventies. Since the same partial order was also independently discovered by Robert E Hartwig, some authors refer to it as Hartwig–Nambooripad order. "Natural" here means that the order is defined in terms of the operation on the semigroup.

In mathematics, an orthodox semigroup is a regular semigroup whose set of idempotents forms a subsemigroup. In more recent terminology, an orthodox semigroup is a regular E-semigroup. The term orthodox semigroup was coined by T. E. Hall and presented in a paper published in 1969. Certain special classes of orthodox semigroups had been studied earlier. For example, semigroups that are also unions of groups, in which the sets of idempotents form subsemigroups were studied by P. H. H. Fantham in 1960.

In mathematics, a catholic semigroup is a semigroup in which no two distinct elements have the same set of inverses. The terminology was introduced by B. M. Schein in a paper published in 1979. Every catholic semigroup either is a regular semigroup or has precisely one element that is not regular. The semigroup of all partial transformations of a set is a catholic semigroup. It follows that every semigroup is embeddable in a catholic semigroup. But the full transformation semigroup on a set is not catholic unless the set is a singleton set. Regular catholic semigroups are both left and right reductive, that is, their representations by inner left and right translations are faithful. A regular semigroup is both catholic and orthodox if and only if the semigroup is an inverse semigroup.

In abstract algebra, an E-dense semigroup is a semigroup in which every element a has at least one weak inversex, meaning that xax = x. The notion of weak inverse is weaker than the notion of inverse used in a regular semigroup.

In mathematics, a right group is an algebraic structure consisting of a set together with a binary operation that combines two elements into a third element while obeying the right group axioms. The right group axioms are similar to the group axioms, but allow for one-sided identity elements and one-sided inverse elements, as opposed to groups where both identities and inverses are two-sided. More precisely, if G is a group, e is the identity of G, a an arbitrary element of G and a' the inverse of a, the following are always true for any group:

References

  1. Clifford, A. H. (1941). "Semigroups admitting relative inverses". Annals of Mathematics. American Mathematical Society. 42 (4): 1037–1049. doi:10.2307/1968781. hdl: 10338.dmlcz/100110 . JSTOR   1968781.
  2. E S Lyapin (1963). Semigroups. American Mathematical Society.
  3. Mario Petrich; Norman R Reilly (1999). Completely regular semigroups. Wiley-IEEE. p. 1. ISBN   0-471-19571-5.
  4. Mario Petrich; Norman R Reilly (1999). Completely regular semigroups. Wiley-IEEE. p. 63. ISBN   0-471-19571-5.
  5. Mario Petrich; Norman R Reilly (1999). Completely regular semigroups. Wiley-IEEE. p. 65. ISBN   0-471-19571-5.
  6. John M Howie (1995). Fundamentals of semigroup theory. Oxford Science Publications. Oxford University Press. ISBN   0-19-851194-9. (Chap. 4)
  7. Zbl   0967.20034 (accessed on 5 May 2009)