Composition H6

Last updated

Composition H6 is a castable military explosive mixture composed of the following percentages by weight: [1]

Contents

H6 is used in a number of military applications, notably underwater munitions (e.g. naval mines, depth charges and torpedoes) where it has generally replaced torpex, being less shock-sensitive and having more stable storage characteristics. It is approximately 1.35 times more powerful than pure TNT.

Properties

See also

Related Research Articles

<span class="mw-page-title-main">RDX</span> Explosive chemical compound

RDX (abbreviation of "Research Department eXplosive") or hexogen, among other names, is an organic compound with the formula (O2N2CH2)3. It is white, odorless and tasteless, widely used as an explosive. Chemically, it is classified as a nitroamine alongside HMX, which is a more energetic explosive than TNT. It was used widely in World War II and remains common in military applications.

<span class="mw-page-title-main">Dynamite</span> Explosive made using nitroglycerin

Dynamite is an explosive made of nitroglycerin, sorbents, and stabilizers. It was invented by the Swedish chemist and engineer Alfred Nobel in Geesthacht, Northern Germany, and was patented in 1867. It rapidly gained wide-scale use as a more robust alternative to the traditional black powder explosives. It allows the use of nitroglycerine's favorable explosive properties while greatly reducing its risk of accidental detonation.

<span class="mw-page-title-main">Explosive</span> Substance that can explode

An explosive is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances.

<span class="mw-page-title-main">TNT</span> Impact-resistant high explosive

Trinitrotoluene, more commonly known as TNT, more specifically 2,4,6-trinitrotoluene, and by its preferred IUPAC name 2-methyl-1,3,5-trinitrobenzene, is a chemical compound with the formula C6H2(NO2)3CH3. TNT is occasionally used as a reagent in chemical synthesis, but it is best known as an explosive material with convenient handling properties. The explosive yield of TNT is considered to be the standard comparative convention of bombs and asteroid impacts. In chemistry, TNT is used to generate charge transfer salts.

<span class="mw-page-title-main">C-4 (explosive)</span> Variety of plastic explosive

C-4 or Composition C-4 is a common variety of the plastic explosive family known as Composition C, which uses RDX as its explosive agent. C-4 is composed of explosives, plastic binder, plasticizer to make it malleable, and usually a marker or odorizing taggant chemical. C-4 has a texture similar to modelling clay and can be molded into any desired shape. C-4 is relatively insensitive and can be detonated only by the shock wave from a detonator or blasting cap.

<span class="mw-page-title-main">Depth charge</span> Anti-submarine weapon

A depth charge is an anti-submarine warfare (ASW) weapon. It is intended to destroy a submarine by being dropped into the water nearby and detonating, subjecting the target to a powerful and destructive hydraulic shock. Most depth charges use high explosive charges and a fuze set to detonate the charge, typically at a specific depth. Depth charges can be dropped by ships, patrol aircraft, and helicopters.

<span class="mw-page-title-main">Amatol</span> High explosive mixture

Amatol is a highly explosive material made from a mixture of TNT and ammonium nitrate. The British name originates from the words ammonium and toluene. Similar mixtures were known as Schneiderite in France. Amatol was used extensively during World War I and World War II, typically as an explosive in military weapons such as aircraft bombs, shells, depth charges, and naval mines. It was eventually replaced with alternative explosives such as Composition B, Torpex, and Tritonal.

<span class="mw-page-title-main">Tritonal</span> High explosive mixture

Tritonal is a mixture of 80% TNT and 20% aluminium powder, used in several types of ordnance such as air-dropped bombs. The aluminium increases the total heat output and hence impulse of the TNT — the length of time during which the blast wave is positive. Tritonal is approximately 18% more powerful than TNT alone.

<span class="mw-page-title-main">Blockbuster bomb</span> Large conventional bombs used in World War II by the Royal Air Force

A blockbuster bomb or cookie was one of several of the largest conventional bombs used in World War II by the Royal Air Force (RAF). The term blockbuster was originally a name coined by the press and referred to a bomb which had enough explosive power to destroy an entire street or large building through the effects of blast in conjunction with incendiary bombs.

<span class="mw-page-title-main">Composition B</span> Explosive, a mix of RDX and TNT

Composition B, also known as Hexotol and Hexolite, is a high explosive consisting of castable mixtures of RDX and TNT. It is used as the main explosive filling in artillery projectiles, rockets, land mines, hand grenades and various other munitions. It was also used for the explosive lenses in the first implosion-type nuclear weapons developed by the United States.

The Composition C family is a family of related US-specified plastic explosives consisting primarily of RDX. All can be moulded by hand for use in demolition work and packed by hand into shaped charge devices. Variants have different proportions and plasticisers and include composition C-2, composition C-3, and composition C-4.

<span class="mw-page-title-main">Torpex</span> High explosive

Torpex is a secondary explosive, 50% more powerful than TNT by mass. Torpex comprises 42% RDX, 40% TNT and 18% powdered aluminium. It was used in the Second World War from late 1942, at which time some used the names Torpex and RDX interchangeably, much to the confusion of today's historical researchers. Torpex proved to be particularly useful in underwater munitions because the aluminium component had the effect of making the explosive pulse last longer, which increased the destructive power. Besides torpedoes, naval mines, and depth charges, Torpex was only used in the Upkeep, Tallboy and Grand Slam bombs as well as the drones employed in Operation Aphrodite. Torpex has long been superseded by H6 and Polymer-bonded explosive (PBX) compositions. It is therefore regarded as obsolete and Torpex is unlikely to be encountered except in old munitions or unexploded ordnance, although a notable exception to this is the Sting Ray lightweight torpedo, which as of October 2020 remains in service with the Royal Navy and several foreign militaries. The German equivalent of Torpex was Trialen.

Cyclotol is an explosive consisting of castable mixtures of RDX and TNT. It is related to the more common Composition B, which is roughly 60% RDX and 40% TNT; various compositions of Cyclotol contain from 65% to 80% RDX. Typical ranges are from 60/40 to 80/20 RDX/TNT, with the most common being 70/30, while the military mostly uses 77/23 optimized in warheads.

<span class="mw-page-title-main">Phlegmatized explosive</span> Explosive mixed with a stabilization or desensitization agent

A phlegmatizedexplosive is an explosive that has had an agent added to stabilize or desensitize it. Phlegmatizing usually improves the handling properties of an explosive Alfred Nobel's breakthrough was the use of cellulose nitrate to phlegmatize nitroglycerine. The phlegmatized product is dynamite.

High Blast Explosive, or HBX, is an explosive used as a bursting charge in missile warheads, mines, depth bombs, depth charges, and torpedoes.

Minol is a military explosive developed by the Admiralty early in the Second World War to augment supplies of trinitrotoluene (TNT) and RDX, which were in short supply. The aluminium component in Minol significantly prolongs the explosive pulse, making it ideal for use in underwater naval weapons where munitions with a longer explosive pulse are more destructive than those with high brisance. Minol cannot be used in weapons fired from gun barrels because there is a risk of detonation when subjected to over 250 gs of acceleration. Initially, three Minol formulas were used. All percentages shown are by weight:

Hexanite was a castable German military explosive developed early in the 20th century before the First World War for the Kaiserliche Marine, intended to augment supplies of trinitrotoluene (TNT), which were then in short supply. Hexanite is slightly less powerful than TNT on its own. The most common hexanite formula was 60% TNT and 40% hexanitrodiphenylamine.

Explosive materials are produced in numerous physical forms for their use in mining, engineering, or military applications. The different physical forms and fabrication methods are grouped together in several use forms of explosives.

There have been several British 21-inch (533 mm) torpedoes used by the Royal Navy since their first development just before the First World War.

IMX-101 is a high-performance insensitive high explosive composite mixture developed by BAE Systems and the United States Army to replace TNT in artillery shells. IMX stands for "Insensitive Munitions eXplosives", which refers to the purpose of IMX-101: to provide explosive force equivalent to TNT without its sensitivity to shocks such as gunfire, explosions from improvised explosive devices, fire, and shrapnel. For example, it is believed that a training incident in Nevada which killed seven Marines would not have occurred with the new explosive. On March 23, 2013, the United States Army ordered $780 million worth of the explosive, with a production of millions of pounds annually, to be produced by BAE at Holston Army Ammunition Plant in Tennessee. The new explosive will cost $8 per pound, compared to $6 per pound for TNT. As of 2023, IMX-101 filled shells are being used in the 2022 Russian invasion of Ukraine.

References

  1. 1 2 "A Critical Diameter Study of the Australian Manufactured Underwater Explosive Composition H6" (PDF). Archived from the original (PDF) on 2014-02-17. Retrieved 2015-09-25.