Concrete frame

Last updated

The most used material on this planet, concrete has been utilized since Egyptian and Roman times to create buildings like the Pantheon. Because of its flexibility when freshly mixed and its durability when hardened, concrete and reinforced concrete frame structures are used in the construction of skyscrapers, roads, bridges, and dams. [1] Also known as a concrete skeleton, this structure is composed of beams, frames, and columns with the latter being the most important since its the primary load carrying component of the construct. Any damage to a beam of slab will only affect the one floor of the building in question, but column damage has the potential to destroy the entire structure. [1]  Resting on foundations, the frame transfers the forces from the building to the ground. Reinforced concrete frame structures are commonly used for this construction since the concrete is strong in compression while the steel rebar is stronger in tension. [1]

Contents

Concept

Connected by rigid joints, reinforced concrete frames consist of beams and columns. With the beams and columns cast in a single operation to act in unison, reinforced concrete frames provide resistance to lateral loads and gravity due to the bends in the beams and columns. Common subtypes of this frame include: Nonductile reinforced concrete frames with or without infill walls, ductile reinforced concrete frames with or without infill walls, and nonductile reinforced concrete frames with reinforced infill walls. [2]

Masonry infills

Most prevalent type are these: RC frames with concrete infill walls, commonly referred to as dual systems, are typically used in earthquake prone areas like Turkey, Colombia, and Greece.

Advantages

While being the most fire resistant material around, concrete frames are stronger, safer, less costly, and more energy efficient than steel buildings. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Reinforced concrete</span> Concrete with rebar

Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel reinforcing bars and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In corrosion engineering terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from corrosion.

<span class="mw-page-title-main">Beam (structure)</span> Structural element capable of withstanding loads by resisting bending

A beam is a structural element that primarily resists loads applied laterally across the beam's axis. Its mode of deflection is primarily by bending, as loads produce reaction forces at the beam's support points and internal bending moments, shear, stresses, strains, and deflections. Beams are characterized by their manner of support, profile, equilibrium conditions, length, and material.

<span class="mw-page-title-main">Curtain wall (architecture)</span> Outer non-structural walls of a building

A curtain wall is an exterior covering of a building in which the outer walls are non-structural, instead serving to protect the interior of the building from the elements. Because the curtain wall façade carries no structural load beyond its own dead load weight, it can be made of lightweight materials. The wall transfers lateral wind loads upon it to the main building structure through connections at floors or columns of the building.

<span class="mw-page-title-main">Seismic retrofit</span> Modification of existing structures to make them more resistant to seismic activity

Seismic retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes. With better understanding of seismic demand on structures and with recent experiences with large earthquakes near urban centers, the need of seismic retrofitting is well acknowledged. Prior to the introduction of modern seismic codes in the late 1960s for developed countries and late 1970s for many other parts of the world, many structures were designed without adequate detailing and reinforcement for seismic protection. In view of the imminent problem, various research work has been carried out. State-of-the-art technical guidelines for seismic assessment, retrofit and rehabilitation have been published around the world – such as the ASCE-SEI 41 and the New Zealand Society for Earthquake Engineering (NZSEE)'s guidelines. These codes must be regularly updated; the 1994 Northridge earthquake brought to light the brittleness of welded steel frames, for example.

A load-bearing wall or bearing wall is a wall that is an active structural element of a building, which holds the weight of the elements above it, by conducting its weight to a foundation structure below it.

<span class="mw-page-title-main">Concrete slab</span> Flat, horizontal concrete element of modern buildings

A concrete slab is a common structural element of modern buildings, consisting of a flat, horizontal surface made of cast concrete. Steel-reinforced slabs, typically between 100 and 500 mm thick, are most often used to construct floors and ceilings, while thinner mud slabs may be used for exterior paving.

<span class="mw-page-title-main">Steel frame</span> Building technique using skeleton frames of vertical steel columns

Steel frame is a building technique with a "skeleton frame" of vertical steel columns and horizontal I-beams, constructed in a rectangular grid to support the floors, roof and walls of a building which are all attached to the frame. The development of this technique made the construction of the skyscraper possible. Steel frame has displaced its predecessor, the iron frame, in the early 20th century.

<span class="mw-page-title-main">Formwork</span> Molds for cast

Formwork is molds into which concrete or similar materials are either precast or cast-in-place. In the context of concrete construction, the falsework supports the shuttering molds. In specialty applications formwork may be permanently incorporated into the final structure, adding insulation or helping reinforce the finished structure.

<span class="mw-page-title-main">Fireproofing</span> Rendering something (structures, materials, etc.) resistant to fire, or incombustible

Fireproofing is rendering something resistant to fire, or incombustible; or material for use in making anything fire-proof. It is a passive fire protection measure. "Fireproof" or "fireproofing" can be used as a noun, verb or adjective; it may be hyphenated ("fire-proof").

<span class="mw-page-title-main">Portal frame</span>

Portal frame is a construction technique where vertical supports are connected to horizontal beams or trusses via fixed joints with designed-in moment-resisting capacity. The result is wide spans and open floors.

Glass fiber reinforced concrete (GFRC) is a type of fiber-reinforced concrete. The product is also known as glassfibre reinforced concrete or GRC in British English. Glass fiber concretes are mainly used in exterior building façade panels and as architectural precast concrete. Somewhat similar materials are fiber cement siding and cement boards.

<span class="mw-page-title-main">Tube (structure)</span> Structural system where a building is designed to act like a hollow cylinder

In structural engineering, the tube is a system where, to resist lateral loads, a building is designed to act like a hollow cylinder, cantilevered perpendicular to the ground. This system was introduced by Fazlur Rahman Khan while at the architectural firm Skidmore, Owings & Merrill (SOM), in their Chicago office. The first example of the tube's use is the 43-story Khan-designed DeWitt-Chestnut Apartment Building, since renamed Plaza on DeWitt, in Chicago, Illinois, finished in 1966.

<span class="mw-page-title-main">Steel plate shear wall</span>

A steel plate shear wall (SPSW) consists of steel infill plates bounded by boundary elements.

<span class="mw-page-title-main">Earthquake-resistant structures</span> Structures designed to protect buildings from earthquakes

Earthquake-resistant or aseismic structures are designed to protect buildings to some or greater extent from earthquakes. While no structure can be entirely impervious to earthquake damage, the goal of earthquake engineering is to erect structures that fare better during seismic activity than their conventional counterparts. According to building codes, earthquake-resistant structures are intended to withstand the largest earthquake of a certain probability that is likely to occur at their location. This means the loss of life should be minimized by preventing collapse of the buildings for rare earthquakes while the loss of the functionality should be limited for more frequent ones.

A buckling-restrained brace (BRB) is a structural brace in a building, designed to allow the building to withstand cyclical lateral loadings, typically earthquake-induced loading. It consists of a slender steel core, a concrete casing designed to continuously support the core and prevent buckling under axial compression, and an interface region that prevents undesired interactions between the two. Braced frames that use BRBs – known as buckling-restrained braced frames, or BRBFs – have significant advantages over typical braced frames.

Mete Avni Sözen was Kettelhut Distinguished Professor of Structural Engineering at Purdue University, Indiana, United States from 1992 to 2018.

<span class="mw-page-title-main">Hybrid masonry</span>

Hybrid masonry is a new type of building system that uses engineered, reinforced masonry to brace frame structures. Typically, hybrid masonry is implemented with concrete masonry panels used to brace steel frame structures. The basic concept is to attach a reinforced concrete masonry panel to a structural steel frame such that some combination of gravity forces, story shears and overturning moments can be transferred to the masonry. The structural engineer can choose from three different types of hybrid masonry and two different reinforcement anchorage types. In conventional steel frame building systems, the vertical force resisting steel frame system is supported in the lateral direction by steel bracing or an equivalent system. When the architectural plans call for concrete masonry walls to be placed within the frame, extra labor is required to ensure the masonry fits around the steel frame. Usually, this placement does not take advantage of the structural properties of the masonry panels. In hybrid masonry, the masonry panels take the place of conventional steel bracing, utilizing the structural properties of reinforced concrete masonry walls.

Moment-resisting frame is a rectilinear assemblage of beams and columns, with the beams rigidly connected to the columns.

<span class="mw-page-title-main">Infill wall</span>

The infill wall is the supported wall that closes the perimeter of a building constructed with a three-dimensional framework structure. Therefore, the structural frame ensures the bearing function, whereas the infill wall serves to separate inner and outer space, filling up the boxes of the outer frames. The infill wall has the unique static function to bear its own weight. The infill wall is an external vertical opaque type of closure. With respect to other categories of wall, the infill wall differs from the partition that serves to separate two interior spaces, yet also non-load bearing, and from the load bearing wall. The latter performs the same functions of the infill wall, hygro-thermically and acoustically, but performs static functions too.

<span class="mw-page-title-main">Tensioned stone</span> Form of stonework used in construction

Tensioned stone is a high-performance composite construction material: stone held in compression with tension elements. The tension elements can be connected to the outside of the stone, but more typically tendons are threaded internally through a drilled duct.

References

  1. 1 2 3 "Reinforced Concrete Frame Construction" (PDF).
  2. [Yakut, Ahmet. (2023). Reinforced Concrete Frame Construction. Middle East Technical University.https://www.world-housing.net/wp-content/uploads/2011/06/RC-Frame_Yakut.pdf https://www.citb.co.uk/media/aycpantr/rc- "RC-Frame_Yakut"].{{cite web}}: Check |url= value (help)
  3. "The Benefits of Structural Concrete Framing".
  1. Reinforced Concrete Frame Sector. https://www.citb.co.uk/media/aycpantr/rc-skills-pathway-schools-brochure.pdf
  2. Yakut Ahmet. Reinforced Concrete Frame Construction. Retrieved 3/20/23. https://www.world-housing.net/wp-content/uploads/2011/06/RC-Frame_Yakut.pdf
  3. Bertagnoli, Gabriele. (2016). Reinforced Concrete Frame Structures. Procedia Engineering, 161, 1013–1017. https://doi.org/10.1016/j.proeng.2016.08.841