Conductive agent

Last updated

Conductive agents are used to ensure electrodes have good charge and discharge performance. Usually, a certain amount of conductive material is added during the production of the pole piece, and the micro current is collected between the active material and the current collector to reduce the micro current. [1] [2] [3] The contact resistance of the electrode accelerates the rate of movement of electrons, and at the same time, can effectively increase the migration rate of lithium ions in the electrode material, thereby improving the charge and discharge efficiency of the electrode. The conductive agent carbon black is used for improving the conductivity of the electrodes and decreasing the resistance of interaction. [1]

Carbon black conductive agent

The conductive carbon black is characterized by small particle size, particularly large specific surface area, and particularly good electrical conductivity, and it can function as a liquid absorption and liquid retention in the battery. [4]

The carbon black conductive agents: acetylene black, 350G, carbon fiber (VGCF), carbon nanotubes (CNTs), Ketjen black (Ketjenblack EC300J, Ketjenblack EC600JD, Carbon ECP, Carbon ECP600JD). [5]

Acetylene Black (Polyacetylene): carbon black obtained by continuous pyrolysis of acetylene having a purity of 99% or more obtained by decomposing and purifying by-product gas during pyrolysis of calcium carbide method or naphtha (crude gasoline).

Ketjen Black: High-efficiency superconducting carbon black for lithium batteries, branched, high purity, and excellent electrical conductivity.

Graphite conductive agent: KS-6, KS-15, SFG-6, SFG-15, etc. [6]

CNTs: the incorporation of CNTs as a conductive additive at a lower weight loading than conventional carbons, like carbon black and graphite, presents a more effective strategy to establish an electrical percolation network. [7]

Related Research Articles

Electrode Electrical conductor used to make contact with nonmetallic parts of a circuit

An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit. Electrodes are essential parts of batteries that can consist of a variety of materials depending on the type of battery.

Lithium-ion battery Rechargeable battery type

A lithium-ion battery or Li-ion battery is a type of rechargeable battery composed of cells in which lithium ions move from the negative electrode through an electrolyte to the positive electrode during discharge and back when charging. Li-ion cells use an intercalated lithium compound as the material at the positive electrode and typically graphite at the negative electrode. Li-ion batteries have a high energy density, no memory effect and low self-discharge. Cells can be manufactured to either prioritize energy or power density. They can however be a safety hazard since they contain flammable electrolytes and if damaged or incorrectly charged can lead to explosions and fires.

Potential applications of carbon nanotubes

Carbon nanotubes (CNTs) are cylinders of one or more layers of graphene (lattice). Diameters of single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) are typically 0.8 to 2 nm and 5 to 20 nm, respectively, although MWNT diameters can exceed 100 nm. CNT lengths range from less than 100 nm to 0.5 m.

The lithium iron phosphate battery or LFP battery is a type of lithium-ion battery using lithium iron phosphate as the cathode material, and a graphitic carbon electrode with a metallic backing as the anode. The energy density of an LFP battery is lower than that of other common lithium ion battery types such as Nickel Manganese Cobalt (NMC) and Nickel Cobalt Aluminum (NCA), and also has a lower operating voltage;CATL's LFP batteries are currently at 125 Wh/kg, up to possibly 160 Wh/kg with improved packing technology, while BYD's LFP batteries are at 150 Wh/kg, compared to over 300 Wh/kg for the highest NMC batteries.

Nanobatteries Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

Lithium iron phosphate Chemical compound

Lithium iron phosphate (LFP) is an inorganic compound with the formula LiFePO
4
. It is a gray, red-grey, brown or black solid that is insoluble in water. The material has attracted attention as a component of lithium iron phosphate batteries, a type of Li-ion battery. This battery chemistry is targeted for use in power tools, electric vehicles, solar energy installations and more recently large grid-scale energy storage.

Lithium-ion capacitor Hybrid type of capacitor

A lithium-ion capacitor (LIC) is a hybrid type of capacitor classified as a type of supercapacitor. It is called a hybrid because the anode is the same as those used in lithium-ion batteries and the cathode is the same as those used in supercapacitors. Activated carbon is typically used as the cathode. The anode of the LIC consists of carbon material which is often pre-doped with lithium ions. This pre-doping process lowers the potential of the anode and allows a relatively high output voltage compared to other supercapacitors.

Nanoball batteries are an experimental type of battery with either the cathode or anode made of nanosized balls that can be composed of various materials such as carbon and lithium iron phosphate. Batteries which use nanotechnology are more capable than regular batteries because of the vastly improved surface area which allows for greater electrical performance, such as fast charging and discharging.

Transparent conducting film Optically transparent and electrically conductive material

Transparent conducting films (TCFs) are thin films of optically transparent and electrically conductive material. They are an important component in a number of electronic devices including liquid-crystal displays, OLEDs, touchscreens and photovoltaics. While indium tin oxide (ITO) is the most widely used, alternatives include wider-spectrum transparent conductive oxides (TCOs), conductive polymers, metal grids and random metallic networks, carbon nanotubes (CNT), graphene, nanowire meshes and ultra thin metal films.

Nanoarchitectures for lithium-ion batteries are attempts to employ nanotechnology to improve the design of lithium-ion batteries. Research in lithium-ion batteries focuses on improving energy density, power density, safety, durability and cost.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

Pseudocapacitor

Pseudocapacitors store electrical energy faradaically by electron charge transfer between electrode and electrolyte. This is accomplished through electrosorption, reduction-oxidation reactions, and intercalation processes, termed pseudocapacitance.

A potassium-ion battery or K-ion battery is a type of battery and analogue to lithium-ion batteries, using potassium ions for charge transfer instead of lithium ions. It was invented by the Iranian/American chemist Ali Eftekhari in 2004.

Supercapacitor Electrochemical capacitor

A supercapacitor (SC), also called an ultracapacitor, is a high-capacity capacitor with a capacitance value much higher than other capacitors, but with lower voltage limits, that bridges the gap between electrolytic capacitors and rechargeable batteries. It typically stores 10 to 100 times more energy per unit volume or mass than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerates many more charge and discharge cycles than rechargeable batteries.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

OCSiAl

OCSiAl is a global nanotechnology company, the world's largest graphene nanotube manufacturer, conducting its operations worldwide. The OCSiAl headquarters are located in Luxembourg, with several offices in the United States, Europe and Asia.

A dual carbon battery is one that uses carbon for both the cathode and the anode.

Vertically aligned carbon nanotube arrays (VANTAs) are a unique microstructure consisting of carbon nanotubes oriented with their longitudinal axis perpendicular to a substrate surface. These VANTAs effectively preserve and often accentuate the unique anisotropic properties of individual carbon nanotubes and possess a morphology that may be precisely controlled. VANTAs are consequently widely useful in a range of current and potential device applications.

Solid dispersion redox flow battery

A solid dispersion redox flow battery is a type of redox flow battery using dispersed solid active materials as the energy storage media. The solid suspensions are stored in energy storage tanks and pumped through electrochemical cells while charging or discharging. In comparison with a conventional redox flow battery where active species are dissolved in aqueous or organic electrolyte, the active materials in a solid dispersion redox flow battery maintain the solid form and are suspended in the electrolyte. Further development expanded the applicable active materials. The solid active materials, especially with active materials from lithium-ion battery, can help the suspensions achieve much higher energy densities than conventional redox flow batteries. This concept is similar to semi-solid flow batteries in which slurries of active materials accompanied by conductive carbon additives to facilitate electrons conducting are stored in energy storage tanks and pumped through the electrochemical reaction cells. Based upon this technique, an analytical method was developed to measure the electrochemical performance of lithium-ion battery active materials, named dispersed particle resistance (DPR).

History of the lithium-ion battery

This is a history of the lithium-ion battery.

References

  1. 1 2 Pi, Yu-Tong; Li, Yin-Tao; Xu, Shan-Shan; Xing, Xiang-Ying; Ma, Hai-Kun; He, Zhan-Bing; Ren, Tie-Zhen (2016). "Is the conductive agent useful in electrodes of graphitized activated carbon?". RSC Advances. 6 (103): 100708–100712. doi:10.1039/C6RA18246A. ISSN   2046-2069.
  2. Zhang, Weike; Wang, Jiawei; Bao, Luyu; Gao, Zeyu; Yu, Junsheng (2019-06-01). "Nanopores created by carbon onion conductive agent providing enhanced capacitance in supercapacitors". Diamond and Related Materials. ScienceDirect. 96: 231–236. doi:10.1016/j.diamond.2019.05.015.
  3. Kang, Kisuk; Lee, Myeong Hwan; Seong, Won Mo; Kim, Jung-Joon; Yoon, Kyungho (2018-05-23). "Investigation on the interface between Li 10 GeP 2 S 12 electrolyte and carbon conductive agents in all-solid-state lithium battery". Scientific Reports. Nature. 8: 8066. doi:10.1038/s41598-018-26101-4. PMC   5966405 .
  4. Kuroda, Shintaro; Tobori, Norio; Sakuraba, Mio; Sato, Yuichi (2003). "Charge–discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries". Journal of Power Sources. ScienceDirect. 119–121: 924–928. doi:10.1016/s0378-7753(03)00230-1.
  5. Takamura, Tsutomu; Saito, Morihiro; Shimokawa, Atushi; Nakahara, Chieko; Sekine, Kyoichi; Maeno, Siji; Kibayashi, Naoki (2000). "Charge/discharge efficiency improvement by the incorporation of conductive carbons in the carbon anode of Li-ion batteries". Journal of Power Sources. ScienceDirect. 90: 45–51. doi:10.1016/s0378-7753(00)00446-8.
  6. "graphite" (PDF).
  7. Landi, Brian J.; Ganter, Matthew J.; Cress, Cory D.; DiLeo, Roberta A.; Raffaelle, Ryne P. (2009). "Carbon nanotubes for lithium ion batteries". Energy & Environmental Science. 2 (6): 638. doi:10.1039/b904116h. ISSN   1754-5692.