In mathematics, the conductor of an elliptic curve over the field of rational numbers (or more generally a local or global field) is an integral ideal, which is analogous to the Artin conductor of a Galois representation. It is given as a product of prime ideals, together with associated exponents, which encode the ramification in the field extensions generated by the points of finite order in the group law of the elliptic curve. The primes involved in the conductor are precisely the primes of bad reduction of the curve: this is the Néron–Ogg–Shafarevich criterion.
Ogg's formula expresses the conductor in terms of the discriminant and the number of components of the special fiber over a local field, which can be computed using Tate's algorithm.
The conductor of an elliptic curve over a local field was implicitly studied (but not named) by Ogg (1967) in the form of an integer invariant ε+δ which later turned out to be the exponent of the conductor.
The conductor of an elliptic curve over the rationals was introduced and named by Weil (1967) as a constant appearing in the functional equation of its L-series, analogous to the way the conductor of a global field appears in the functional equation of its zeta function. He showed that it could be written as a product over primes with exponents given by order(Δ) − μ + 1, which by Ogg's formula is equal to ε+δ. A similar definition works for any global field. Weil also suggested that the conductor was equal to the level of a modular form corresponding to the elliptic curve.
Serre & Tate (1968) extended the theory to conductors of abelian varieties.
Let E be an elliptic curve defined over a local field K and p a prime ideal of the ring of integers of K. We consider a minimal equation for E: a generalised Weierstrass equation whose coefficients are p-integral and with the valuation of the discriminant νp(Δ) as small as possible. If the discriminant is a p-unit then E has good reduction at p and the exponent of the conductor is zero.
We can write the exponent f of the conductor as a sum ε + δ of two terms, corresponding to the tame and wild ramification. The tame ramification part ε is defined in terms of the reduction type: ε=0 for good reduction, ε=1 for multiplicative reduction and ε=2 for additive reduction. The wild ramification term δ is zero unless p divides 2 or 3, and in the latter cases it is defined in terms of the wild ramification of the extensions of K by the division points of E by Serre's formula
Here M is the group of points on the elliptic curve of order l for a prime l, P is the Swan representation, and G the Galois group of a finite extension of K such that the points of M are defined over it (so that G acts on M)
The exponent of the conductor is related to other invariants of the elliptic curve by Ogg's formula:
where n is the number of components (without counting multiplicities) of the singular fibre of the Néron minimal model for E. (This is sometimes used as a definition of the conductor).
Ogg's original proof used a lot of case by case checking, especially in characteristics 2 and 3. Saito (1988) gave a uniform proof and generalized Ogg's formula to more general arithmetic surfaces.
We can also describe ε in terms of the valuation of the j-invariant νp(j): it is 0 in the case of good reduction; otherwise it is 1 if νp(j) < 0 and 2 if νp(j) ≥ 0.
Let E be an elliptic curve defined over a number field K. The global conductor is the ideal given by the product over primes of K
This is a finite product as the primes of bad reduction are contained in the set of primes divisors of the discriminant of any model for E with global integral coefficients.
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:
The modularity theorem states that elliptic curves over the field of rational numbers are related to modular forms. Andrew Wiles proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001.
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory.
In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or a family of abelian varieties. It goes back to the studies of Pierre de Fermat on what are now recognized as elliptic curves; and has become a very substantial area of arithmetic geometry both in terms of results and conjectures. Most of these can be posed for an abelian variety A over a number field K; or more generally.
In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory.
In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.
In number theory and algebraic geometry, a modular curveY(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curvesX(Γ) which are compactifications obtained by adding finitely many points to this quotient. The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field of rational numbers Q or a cyclotomic field Q(ζn). The latter fact and its generalizations are of fundamental importance in number theory.
Ribet's theorem is part of number theory. It concerns properties of Galois representations associated with modular forms. It was proposed by Jean-Pierre Serre and proven by Ken Ribet. The proof was a significant step towards the proof of Fermat's Last Theorem (FLT). As shown by Serre and Ribet, the Taniyama–Shimura conjecture and the epsilon conjecture together imply that FLT is true.
In algebraic geometry, a semistable abelian variety is an abelian variety defined over a global or local field, which is characterized by how it reduces at the primes of the field.
In mathematics, the Hasse–Weil zeta function attached to an algebraic variety V defined over an algebraic number field K is a meromorphic function on the complex plane defined in terms of the number of points on the variety after reducing modulo each prime number p. It is a global L-function defined as an Euler product of local zeta functions.
The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.
In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified.
This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.
In mathematics, elliptic units are certain units of abelian extensions of imaginary quadratic fields constructed using singular values of modular functions, or division values of elliptic functions. They were introduced by Gilles Robert in 1973, and were used by John Coates and Andrew Wiles in their work on the Birch and Swinnerton-Dyer conjecture. Elliptic units are an analogue for imaginary quadratic fields of cyclotomic units. They form an example of an Euler system.
In the theory of elliptic curves, Tate's algorithm takes as input an integral model of an elliptic curve E over , or more generally an algebraic number field, and a prime or prime ideal p. It returns the exponent fp of p in the conductor of E, the type of reduction at p, the local index
In number theory, Szpiro's conjecture relates to the conductor and the discriminant of an elliptic curve. In a slightly modified form, it is equivalent to the well-known abc conjecture. It is named for Lucien Szpiro, who formulated it in the 1980s. Szpiro's conjecture and its equivalent forms have been described as "the most important unsolved problem in Diophantine analysis" by Dorian Goldfeld, in part to its large number of consequences in number theory including Roth's theorem, the Mordell conjecture, the Fermat–Catalan conjecture, and Brocard's problem.
In mathematics, in Diophantine geometry, the conductor of an abelian variety defined over a local or global field F is a measure of how "bad" the bad reduction at some prime is. It is connected to the ramification in the field generated by the torsion points.
In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map.
In mathematics, the Artin conductor is a number or ideal associated to a character of a Galois group of a local or global field, introduced by Emil Artin as an expression appearing in the functional equation of an Artin L-function.
In mathematics, the Néron–Ogg–Shafarevich criterion states that if A is an elliptic curve or abelian variety over a local field K and ℓ is a prime not dividing the characteristic of the residue field of K then A has good reduction if and only if the ℓ-adic Tate module Tℓ of A is unramified. Andrew Ogg (1967) introduced the criterion for elliptic curves. Serre and Tate (1968) used the results of André Néron (1964) to extend it to abelian varieties, and named the criterion after Ogg, Néron and Igor Shafarevich.