Connective constant

Last updated

In mathematics, the connective constant is a numerical quantity associated with self-avoiding walks on a lattice. It is studied in connection with the notion of universality in two-dimensional statistical physics models. [1] While the connective constant depends on the choice of lattice so itself is not universal (similarly to other lattice-dependent quantities such as the critical probability threshold for percolation), it is nonetheless an important quantity that appears in conjectures for universal laws. Furthermore, the mathematical techniques used to understand the connective constant, for example in the recent rigorous proof by Duminil-Copin and Smirnov that the connective constant of the hexagonal lattice has the precise value , may provide clues [2] to a possible approach for attacking other important open problems in the study of self-avoiding walks, notably the conjecture that self-avoiding walks converge in the scaling limit to the Schramm–Loewner evolution.

Contents

Definition

The connective constant is defined as follows. Let denote the number of n-step self-avoiding walks starting from a fixed origin point in the lattice. Since every n + m step self avoiding walk can be decomposed into an n-step self-avoiding walk and an m-step self-avoiding walk, it follows that . Then by applying Fekete's lemma to the logarithm of the above relation, the limit can be shown to exist. This number is called the connective constant, and clearly depends on the particular lattice chosen for the walk since does. The value of is precisely known only for two lattices, see below. For other lattices, has only been approximated numerically. It is conjectured that as n goes to infinity, where and , the critical amplitude, depend on the lattice, and the exponent , which is believed to be universal and dependent on the dimension of the lattice, is conjectured to be . [3]

Known values

LatticeConnective constant
Hexagonal
Triangular
Square
Kagomé
Manhattan
L-lattice
lattice
lattice

These values are taken from the 1998 Jensen–Guttmann paper [4] and a more recent paper by Jacobsen, Scullard and Guttmann. [5] The connective constant of the lattice, since each step on the hexagonal lattice corresponds to either two or three steps in it, can be expressed exactly as the largest real root of the polynomial

given the exact expression for the hexagonal lattice connective constant. More information about these lattices can be found in the percolation threshold article.

Duminil-Copin–Smirnov proof

In 2010, Hugo Duminil-Copin and Stanislav Smirnov published the first rigorous proof of the fact that for the hexagonal lattice. [2] This had been conjectured by Nienhuis in 1982 as part of a larger study of O(n) models using renormalization techniques. [6] The rigorous proof of this fact came from a program of applying tools from complex analysis to discrete probabilistic models that has also produced impressive results about the Ising model among others. [7] The argument relies on the existence of a parafermionic observable that satisfies half of the discrete Cauchy–Riemann equations for the hexagonal lattice. We modify slightly the definition of a self-avoiding walk by having it start and end on mid-edges between vertices. Let H be the set of all mid-edges of the hexagonal lattice. For a self-avoiding walk between two mid-edges and , we define to be the number of vertices visited and its winding as the total rotation of the direction in radians when is traversed from to . The aim of the proof is to show that the partition function

converges for and diverges for where the critical parameter is given by . This immediately implies that .

Given a domain in the hexagonal lattice, a starting mid-edge , and two parameters and , we define the parafermionic observable

If and , then for any vertex in , we have

where are the mid-edges emanating from . This lemma establishes that the parafermionic observable is divergence-free. It has not been shown to be curl-free, but this would solve several open problems (see conjectures). The proof of this lemma is a clever computation that relies heavily on the geometry of the hexagonal lattice.

Next, we focus on a finite trapezoidal domain with 2L cells forming the left hand side, T cells across, and upper and lower sides at an angle of . (Picture needed.) We embed the hexagonal lattice in the complex plane so that the edge lengths are 1 and the mid-edge in the center of the left hand side is positioned at 1/2. Then the vertices in are given by

We now define partition functions for self-avoiding walks starting at and ending on different parts of the boundary. Let denote the left hand boundary, the right hand boundary, the upper boundary, and the lower boundary. Let

By summing the identity

over all vertices in and noting that the winding is fixed depending on which part of the boundary the path terminates at, we can arrive at the relation

after another clever computation. Letting , we get a strip domain and partition functions

It was later shown that , but we do not need this for the proof. [8] We are left with the relation

.

From here, we can derive the inequality

And arrive by induction at a strictly positive lower bound for . Since , we have established that .

For the reverse inequality, for an arbitrary self avoiding walk on the honeycomb lattice, we perform a canonical decomposition due to Hammersley and Welsh of the walk into bridges of widths and . Note that we can bound

which implies . Finally, it is possible to bound the partition function by the bridge partition functions

And so, we have that as desired.

Conjectures

Nienhuis argued in favor of Flory's prediction that the mean squared displacement of the self-avoiding random walk satisfies the scaling relation , with . [2] The scaling exponent and the universal constant could be computed if the self-avoiding walk possesses a conformally invariant scaling limit, conjectured to be a Schramm–Loewner evolution with . [9]

See also

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Rayleigh distribution</span> Probability distribution

In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distribution is named after Lord Rayleigh.

In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation

In probability and statistics, a circular distribution or polar distribution is a probability distribution of a random variable whose values are angles, usually taken to be in the range [0, 2π). A circular distribution is often a continuous probability distribution, and hence has a probability density, but such distributions can also be discrete, in which case they are called circular lattice distributions. Circular distributions can be used even when the variables concerned are not explicitly angles: the main consideration is that there is not usually any real distinction between events occurring at the lower or upper end of the range, and the division of the range could notionally be made at any point.

<span class="mw-page-title-main">Chi distribution</span>

In probability theory and statistics, the chi distribution is a continuous probability distribution over the non-negative real line. It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. It is thus related to the chi-squared distribution by describing the distribution of the positive square roots of a variable obeying a chi-squared distribution.

Noncentral <i>t</i>-distribution Probability distribution

The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter. Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false. This leads to its use in statistics, especially calculating statistical power. The noncentral t-distribution is also known as the singly noncentral t-distribution, and in addition to its primary use in statistical inference, is also used in robust modeling for data.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

In mathematics, the Khintchine inequality, named after Aleksandr Khinchin and spelled in multiple ways in the Latin alphabet, is a theorem from probability, and is also frequently used in analysis. Heuristically, it says that if we pick complex numbers , and add them together each multiplied by a random sign , then the expected value of the sum's modulus, or the modulus it will be closest to on average, will be not too far off from .

A hydrogen-like atom (or hydrogenic atom) is any atom or ion with a single valence electron. These atoms are isoelectronic with hydrogen. Examples of hydrogen-like atoms include, but are not limited to, hydrogen itself, all alkali metals such as Rb and Cs, singly ionized alkaline earth metals such as Ca+ and Sr+ and other ions such as He+, Li2+, and Be3+ and isotopes of any of the above. A hydrogen-like atom includes a positively charged core consisting of the atomic nucleus and any core electrons as well as a single valence electron. Because helium is common in the universe, the spectroscopy of singly ionized helium is important in EUV astronomy, for example, of DO white dwarf stars.

In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics, which are well-defined at the origin and the irregular solid harmonics, which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:

In mathematics, the Fortuin–Kasteleyn–Ginibre (FKG) inequality is a correlation inequality, a fundamental tool in statistical mechanics and probabilistic combinatorics, due to Cees M. Fortuin, Pieter W. Kasteleyn, and Jean Ginibre (1971). Informally, it says that in many random systems, increasing events are positively correlated, while an increasing and a decreasing event are negatively correlated. It was obtained by studying the random cluster model.

In probability theory and directional statistics, a wrapped Lévy distribution is a wrapped probability distribution that results from the "wrapping" of the Lévy distribution around the unit circle.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.

In mathematics, the Fox–Wright function (also known as Fox–Wright Psi function, not to be confused with Wright Omega function) is a generalisation of the generalised hypergeometric function pFq(z) based on ideas of Charles Fox (1928) and E. Maitland Wright (1935):

In mathematics, the Poisson boundary is a measure space associated to a random walk. It is an object designed to encode the asymptotic behaviour of the random walk, i.e. how trajectories diverge when the number of steps goes to infinity. Despite being called a boundary it is in general a purely measure-theoretical object and not a boundary in the topological sense. However, in the case where the random walk is on a topological space the Poisson boundary can be related to the Martin boundary, which is an analytic construction yielding a genuine topological boundary. Both boundaries are related to harmonic functions on the space via generalisations of the Poisson formula.

<span class="mw-page-title-main">Batch normalization</span> Method used to make artificial neural networks faster and stable by re-centering and re-scaling

Batch normalization is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.

The convolutional sparse coding paradigm is an extension of the global sparse coding model, in which a redundant dictionary is modeled as a concatenation of circulant matrices. While the global sparsity constraint describes signal as a linear combination of a few atoms in the redundant dictionary , usually expressed as for a sparse vector , the alternative dictionary structure adopted by the convolutional sparse coding model allows the sparsity prior to be applied locally instead of globally: independent patches of are generated by "local" dictionaries operating over stripes of .

References

  1. Madras, N.; Slade, G. (1996). The Self-Avoiding Walk. Birkhäuser. ISBN   978-0-8176-3891-7.
  2. 1 2 3 Duminil-Copin, Hugo; Smirnov, Stanislav (2010). "The connective constant of the honeycomb lattice equals ". arXiv: 1007.0575 [math-ph].
  3. Vöge, Markus; Guttmann, Anthony J. (2003). "On the number of hexagonal polyominoes". Theoretical Computer Science. 307 (2): 433–453. doi:10.1016/S0304-3975(03)00229-9.
  4. Jensen, I.; Guttmann, A. J. (1998). "Self-avoiding walks, neighbor-avoiding walks and trails on semi-regular lattices" (PDF). Journal of Physics A. 31 (40): 8137–45. Bibcode:1998JPhA...31.8137J. doi:10.1088/0305-4470/31/40/008.
  5. Jesper Lykke Jacobsen, Christian R Scullard and Anthony J Guttmann, 2016 J. Phys. A: Math. Theor. 49 494004
  6. Nienhuis, Bernard (1982). "Exact critical point and critical exponents of O(n) models in two dimensions". Physical Review Letters. 49 (15): 1062–1065. Bibcode:1982PhRvL..49.1062N. doi:10.1103/PhysRevLett.49.1062.
  7. Smirnov, Stanislav (2010). "Discrete Complex Analysis and Probability". Proceedings of the International Congress of Mathematicians (Hyderabad, India) 2010. pp. 565–621. arXiv: 1009.6077 . Bibcode:2010arXiv1009.6077S.
  8. Smirnov, Stanislav (2014). "The critical fugacity for surface adsorption of SAW on the honeycomb lattice is ". Communications in Mathematical Physics. 326 (3): 727–754. arXiv: 1109.0358 . Bibcode:2014CMaPh.326..727B. doi:10.1007/s00220-014-1896-1. S2CID   54799238.
  9. Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin (2004). "On the scaling limit of planar self-avoiding walk". In Lapidus, Michel L.; van Frankenhuijsen, Machiel (eds.). Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2: Multifractals, Probability and Statistical Mechanics, Applications. Proceedings of Symposia in Pure Mathematics. Vol. 72. pp. 339–364. arXiv: math/0204277 . Bibcode:2002math......4277L. doi:10.1090/pspum/072.2/2112127. ISBN   9780821836385. MR   2112127. S2CID   16710180.