Constant chord theorem

Last updated
constant chord length:
|
P
1
Q
1
|
=
|
P
2
Q
2
|
{\displaystyle |P_{1}Q_{1}|=|P_{2}Q_{2}|} Satz von der konstanten Sehne2.svg
constant chord length:
constant diameter length:
|
P
1
Q
1
|
=
|
P
2
Q
2
|
{\displaystyle |P_{1}Q_{1}|=|P_{2}Q_{2}|} Satz von der konstanten Sehne 3d.png
constant diameter length:

The constant chord theorem is a statement in elementary geometry about a property of certain chords in two intersecting circles.

The circles and intersect in the points and . is an arbitrary point on being different from and . The lines and intersect the circle in and . The constant chord theorem then states that the length of the chord in does not depend on the location of on , in other words the length is constant.

The theorem stays valid when coincides with or , provided one replaces the then undefined line or by the tangent on at .

A similar theorem exists in three dimensions for the intersection of two spheres. The spheres and intersect in the circle . is arbitrary point on the surface of the first sphere , that is not on the intersection circle . The extended cone created by and intersects the second sphere in a circle. The length of the diameter of this circle is constant, that is it does not depend on the location of on .

Nathan Altshiller Court described the constant chord theorem 1925 in the article sur deux cercles secants for the Belgian math journal Mathesis. Eight years later he published On Two Intersecting Spheres in the American Mathematical Monthly, which contained the 3-dimensional version. Later it was included in several textbooks, such as Ross Honsberger's Mathematical Morsels and Roger B. Nelsen's Proof Without Words II, where it was given as a problem, or the German geometry textbook Mit harmonischen Verhältnissen zu Kegelschnitten by Halbeisen, Hungerbühler and Läuchli, where it was given as a theorem.

Related Research Articles

Circle Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre; equivalently it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any point of the circle and the centre is called the radius. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted.

Parabola Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

Quadrilateral polygon with four sides and four corners

A quadrilateral is a polygon in Euclidean plane geometry with four edges (sides) and four vertices (corners). Other names for quadrilateral include quadrangle, tetragon, and 4-gon. A quadrilateral with vertices , , and is sometimes denoted as .

Sphere Geometrical object that is the surface of a ball

A sphere is a geometrical object in three-dimensional space that is the surface of a ball.

Perpendicular Relationship between two lines that meet at a right angle (90 degrees)

In elementary geometry, the property of being perpendicular (perpendicularity) is the relationship between two lines which meet at a right angle. The property extends to other related geometric objects.

Nine-point circle

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:

Equilateral triangle Type of triangle with three sides of equal length

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

Cyclic quadrilateral Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

In geometry, a secant is a line that intersects a curve at a minimum of two distinct points. The word secant comes from the Latin word secare, meaning to cut. In the case of a circle, a secant intersects the circle at exactly two points. A chord is the line segment determined by the two points, that is, the interval on the secant whose ends are the two points.

In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied.

Chord (geometry) Geometric line segment whose endpoints both lie on the curve

A chord of a circle is a straight line segment whose endpoints both lie on a circular arc. The infinite line extension of a chord is a secant line, or just secant. More generally, a chord is a line segment joining two points on any curve, for instance, an ellipse. A chord that passes through a circle's center point is the circle's diameter. The word chord is from the Latin chorda meaning bowstring.

Hyperbolic space Non-Euclidean geometry

In mathematics, a hyperbolic space is a homogeneous space that has a constant negative curvature, where in this case the curvature is the sectional curvature. It is hyperbolic geometry in more than 2 dimensions, and is distinguished from Euclidean spaces with zero curvature that define the Euclidean geometry, and elliptic geometry that have a constant positive curvature.

Power of a point

In elementary plane geometry, the power of a point is a real number h that reflects the relative distance of a given point from a given circle. Specifically, the power of a point P with respect to a circle O of radius r is defined by.

Intersecting chords theorem Relates the four line segments created by two intersecting chords within a circle

The intersecting chords theorem or just the chord theorem is a statement in elementary geometry that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

Intersecting secants theorem Relates the line segments created by two intersecting secants and the associated circle

The intersecting secant theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the associated circle.

Orthodiagonal quadrilateral

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

In mathematics, a quadratic set is a set of points in a projective space that bears the same essential incidence properties as a quadric.

Tangent-secant theorem Relates line segments created by a secant with a tangent line

The tangent-secant theorem describes the relation of line segments created by a secant and a tangent line with the associated circle. This result is found as Proposition 36 in Book 3 of Euclid's Elements.

Theorem of the gnomon Certain parallelograms occurring in a gnomon have areas of equal size

The theorem of the gnomon states that certain parallelograms occurring in a gnomon have areas of equal size.

Carnots theorem (conics) A relation between conic sections and triangles

Carnot's theorem describes a relation between conic sections and triangles.

References