Contrastive Hebbian learning

Last updated

Contrastive Hebbian learning is a biologically plausible form of Hebbian learning.

It is based on the contrastive divergence algorithm, which has been used to train a variety of energy-based latent variable models. [1]

In 2003, contrastive Hebbian learning was shown to be equivalent in power to the backpropagation algorithms commonly used in machine learning. [2]

Related Research Articles

Artificial neural network Computational model used in machine learning, based on connected, hierarchical functions

Artificial neural networks (ANNs), usually simply called neural networks (NNs) or, more simply yet, neural nets, are computing systems inspired by the biological neural networks that constitute animal brains.

Unsupervised learning Machine learning technique

Unsupervised learning is a type of algorithm that learns patterns from untagged data. The hope is that through mimicry, which is an important mode of learning in people, the machine is forced to build a compact internal representation of its world and then generate imaginative content from it. In contrast to supervised learning where data is tagged by an expert, e.g. as a "ball" or "fish", unsupervised methods exhibit self-organization that captures patterns as probability densities or a combination of neural feature preferences. The other levels in the supervision spectrum are reinforcement learning where the machine is given only a numerical performance score as guidance, and semi-supervised learning where a smaller portion of the data is tagged.

Nonlinear dimensionality reduction Summary of algorithms for nonlinear dimensionality reduction

High-dimensional data, meaning data that requires more than two or three dimensions to represent, can be difficult to interpret. One approach to simplification is to assume that the data of interest lies within lower-dimensional space. If the data of interest is of low enough dimension, the data can be visualised in the low-dimensional space.

Expectation–maximization algorithm Iterative method for finding maximum likelihood estimates in statistical models

In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

Boltzmann machine Type of stochastic recurrent neural network

A Boltzmann machine is a stochastic spin-glass model with an external field, i.e., a Sherrington–Kirkpatrick model, that is a stochastic Ising Model. It is a statistical physics technique applied in the context of cognitive science. It is also classified as Markov random field.

Backpropagation Optimization algorithm for artificial neural networks

In machine learning, backpropagation is a widely used algorithm for training feedforward neural networks. Generalizations of backpropagation exist for other artificial neural networks (ANNs), and for functions generally. These classes of algorithms are all referred to generically as "backpropagation". In fitting a neural network, backpropagation computes the gradient of the loss function with respect to the weights of the network for a single input–output example, and does so efficiently, unlike a naive direct computation of the gradient with respect to each weight individually. This efficiency makes it feasible to use gradient methods for training multilayer networks, updating weights to minimize loss; gradient descent, or variants such as stochastic gradient descent, are commonly used. The backpropagation algorithm works by computing the gradient of the loss function with respect to each weight by the chain rule, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this is an example of dynamic programming.

In statistics, latent variables are variables that are not directly observed but are rather inferred through a mathematical model from other variables that are observed. Mathematical models that aim to explain observed variables in terms of latent variables are called latent variable models. Latent variable models are used in many disciplines, including psychology, demography, economics, engineering, medicine, ecology, physics, machine learning/artificial intelligence, bioinformatics, chemometrics, natural language processing, econometrics, management and the social sciences.

Conditional random field Class of statistical modeling methods

Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without considering "neighbouring" samples, a CRF can take context into account. To do so, the predictions are modelled as a graphical model, which represents the presence of dependencies between the predictions. What kind of graph is used depends on the application. For example, in natural language processing, "linear chain" CRFs are popular, for which each prediction is dependent only on its immediate neighbours. In image processing, the graph typically connects locations to nearby and/or similar locations to enforce that they receive similar predictions.

Leabra stands for local, error-driven and associative, biologically realistic algorithm. It is a model of learning which is a balance between Hebbian and error-driven learning with other network-derived characteristics. This model is used to mathematically predict outcomes based on inputs and previous learning influences. This model is heavily influenced by and contributes to neural network designs and models. This algorithm is the default algorithm in emergent when making a new project, and is extensively used in various simulations.

Oja's learning rule, or simply Oja's rule, named after Finnish computer scientist Erkki Oja, is a model of how neurons in the brain or in artificial neural networks change connection strength, or learn, over time. It is a modification of the standard Hebb's Rule that, through multiplicative normalization, solves all stability problems and generates an algorithm for principal components analysis. This is a computational form of an effect which is believed to happen in biological neurons.

The generalized Hebbian algorithm (GHA), also known in the literature as Sanger's rule, is a linear feedforward neural network model for unsupervised learning with applications primarily in principal components analysis. First defined in 1989, it is similar to Oja's rule in its formulation and stability, except it can be applied to networks with multiple outputs. The name originates because of the similarity between the algorithm and a hypothesis made by Donald Hebb about the way in which synaptic strengths in the brain are modified in response to experience, i.e., that changes are proportional to the correlation between the firing of pre- and post-synaptic neurons.

In neuroscience and computer science, synaptic weight refers to the strength or amplitude of a connection between two nodes, corresponding in biology to the amount of influence the firing of one neuron has on another. The term is typically used in artificial and biological neural network research.

GeneRec is a generalization of the recirculation algorithm, and approximates Almeida-Pineda recurrent backpropagation. It is used as part of the Leabra algorithm for error-driven learning.

Restricted Boltzmann machine Class of artificial neural network

A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

An artificial neural network's learning rule or learning process is a method, mathematical logic or algorithm which improves the network's performance and/or training time. Usually, this rule is applied repeatedly over the network. It is done by updating the weights and bias levels of a network when a network is simulated in a specific data environment. A learning rule may accept existing conditions of the network and will compare the expected result and actual result of the network to give new and improved values for weights and bias. Depending on the complexity of actual model being simulated, the learning rule of the network can be as simple as an XOR gate or mean squared error, or as complex as the result of a system of differential equations.

Deep belief network Type of artificial neural network

In machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables, with connections between the layers but not between units within each layer.

Outline of machine learning Overview of and topical guide to machine learning

The following outline is provided as an overview of and topical guide to machine learning. Machine learning is a subfield of soft computing within computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

The history of artificial neural networks (ANN) began with Warren McCulloch and Walter Pitts (1943) who created a computational model for neural networks based on algorithms called threshold logic. This model paved the way for research to split into two approaches. One approach focused on biological processes while the other focused on the application of neural networks to artificial intelligence. This work led to work on nerve networks and their link to finite automata.

Variational autoencoder Deep learning generative model to encode data representation

In machine learning, a variational autoencoder (VAE), is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling, belonging to the families of probabilistic graphical models and variational Bayesian methods.

An energy-based model (EBM) is a form of generative model (GM) imported directly from statistical physics to learning. GMs learn an underlying data distribution by analyzing a sample dataset. Once trained, a GM can produce other datasets that also match the data distribution. EBMs provide a unified framework for many probabilistic and non-probabilistic approaches to such learning, particularly for training graphical and other structured models.

References

  1. Qiu, Yixuan; Zhang, Lingsong; Wang, Xiao (2019-09-25). "Unbiased Contrastive Divergence Algorithm for Training Energy-Based Latent Variable Models".{{cite journal}}: Cite journal requires |journal= (help) presented at the International Conference on Learning Representations, 2019
  2. Xie, Xiaohui; Seung, H. Sebastian (February 2003). "Equivalence of backpropagation and contrastive Hebbian learning in a layered network". Neural Computation. 15 (2): 441–454. doi:10.1162/089976603762552988. ISSN   0899-7667. PMID   12590814. S2CID   11201868.

See also