Control channel

Last updated
A Cellular network tower in the Philippines. Cellsite.jpg
A Cellular network tower in the Philippines.

In radio communication, a control channel is a central channel that controls other constituent radios by handling data streams. It is most often used in the context of a trunked radio system, where the control channel sends various data which coordinates users in talkgroups.

Contents

In GSM networks, Control Channels are divided into three categories: Broadcast Channel (BCH), Common Control Channel (CCCH), and Dedicated Control Channel (DCCH). [1]

Broadcast Channel (BCH)

The group of Broadcast Channel is subdivided into three channels:

  1. Broadcast Control Channel (BCCH)
  2. Frequency Correction Channel (FCCH)
  3. Synchronization Channel (SCH)

The BCCH is transmitted by the base transceiver station (BTS) at all times. The radio frequency (RF) carrier used to transmit the BCCH is referred to as the BCCH carrier. The mobile station (MS) monitors the information carried on the BCCH periodically (at least every 30 secs), when it is switched on and not in a call.

The BCCH Consists of:

a. Broadcast Control Channel (BCCH): Carries the following information:

The BCCH is transmitted at constant power at all times, and all MS that may seek to use it to measure its signal strength. “Dummy” bursts are transmitted to ensure continuity when there is no BCCH carrier traffic.

b. Frequency Correction Channel (FCCH): This is transmitted frequently on the BCCH timeslot and allows the mobile to synchronize its own frequency to that of the transmitting base site. The FCCH may only be sent during timeslot 0 on the BCCH carrier frequency and therefore it acts as a flag to the mobile to identify Timeslot 0. It has a sequence of 148 zeros transmitted by the BTS.


c. Synchronization Channel (SCH) The SCH carries the information to enable the MS to synchronize to the TDMA frame structure and know the timing of the individual timeslots. The following parameters are sent:

The MS will monitor BCCH information from surrounding cells and store the information from the best six cells. The SCH information on these cells is also stored so that the MS may quickly resynchronize when it enters a new cell. Follows the FCCH and contains BTS identification and location information.

Common Control Channels

The Common Control Channel (CCCH) is responsible for transferring control information between all mobiles and the BTS. This is necessary for the implementation of “call origination” and “call paging” functions. It consists of the following:

a. Random Access Channel (RACH) Used by the mobile when it requires gaining access to the system. This occurs when the mobile initiates a call or responds to a page.

b. Paging Channel (PCH) Used by the BTS to page MS, (paging can be performed by an IMSI, TMSI or IMEI).

c. Access Grant Control Channel (AGCH) Used by the BTS to assign a dedicated control channel to a MS in response to an access message received on the Random Access Channel. The MS will move to the dedicated channel in order to proceed with either a call setup, response to a paging message, Location Area Update or Short Message Service.

d. Cell Broadcast Channel (CBCH) This channel is used to transmit messages to be broadcast to all MS’s within a cell. The CBCH uses a dedicated control channel to send its messages, however it is considered a common channel because all mobiles in the cell can receive the messages.

Active MS’s must frequently monitor both BCCH and CCCH. The CCCH will be transmitted on the RF carrier with the BCCH.

Dedicated Control Channels

The DCCH is a single timeslot on an RF carrier that is used to convey eight Stand-alone Dedicated Control Channels (SDCCH). A single MS for call setup, authentication, location updating and SMS point to point use a SDCCH. As we will see later, SDCCH can also be found on a BCCH/CCCH timeslot, this configuration only allows four SDCCHs.

a. Slow Associated Control Channel (SACCH) Conveys power control and timing information in the downlink direction (towards the MS) and Receive Signal Strength Indicator (RSSI), and link quality reports in the uplink direction.

b. Fast Associated Control Channel (FACCH) The FACCH is transmitted instead of a TCH. The FACCH ‘‘steals” the TCH burst and inserts its own information. The FACCH is used to carry out user authentication, handovers, and immediate assignment.

c. Stand-alone Dedicated channel (SDCCH)

All of the control channels are required for system operation, however, in the same way that we allow different users to share the radio channel by using different timeslots to carry the conversation data, the control channels share time slots on the radio channel at different times. This allows efficient passing of control information without wasting capacity that could be used for call traffic. To do this we must organize the times lots between those, which will be used for traffic, and those, which will carry control signaling. DCCH is control channel.

Channel Combination

The different logical channel types mentioned are grouped into what are called channel combination. The four most common channel combination are listed below:

1. Full Rate Traffic Channel Combination – TCH8/FACCH + SACCH

2. Broadcast Channel Combination – BCCH + CCCH

3. Dedicated Channel Combination – SDCCH8 + SACCH8

4. Combined Channel Combination – BCCH+CCCH+SDCCH4+SACCH4

5. Half Rate Traffic Channel Combination – TCH16/FACCH +

The Half Rate Channel Combination (when introduced) will be very similar to the Full Rate Traffic Combination.

See also

Related Research Articles

Amplitude modulation Radio modulation via wave amplitude

Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the amplitude of the wave is varied in proportion to that of the message signal, such as an audio signal. This technique contrasts with angle modulation, in which either the frequency of the carrier wave is varied, as in frequency modulation, or its phase, as in phase modulation.

Enhanced Data rates for GSM Evolution Digital mobile phone technology

Enhanced Data rates for GSM Evolution (EDGE) also known as Enhanced GPRS (EGPRS), IMT Single Carrier (IMT-SC), or Enhanced Data rates for Global Evolution) is a digital mobile phone technology that allows improved data transmission rates as a backward-compatible extension of GSM. EDGE is considered a pre-3G radio technology and is part of ITU's 3G definition. EDGE was deployed on GSM networks beginning in 2003 – initially by Cingular in the United States.

General Packet Radio Service Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS) is a packet oriented mobile data standard on the 2G and 3G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

Time-division multiple access Channel access method for networks using a shared communications medium

Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium while using only a part of its channel capacity. Dynamic TDMA is a TDMA variant that dynamically reserves a variable number of time slots in each frame to variable bit-rate data streams, based on the traffic demand of each data stream.

Composite video Analog video signal format

Composite video is an analog video signal format that carries standard-definition video as a single channel. Video information is encoded on one channel, unlike the higher-quality S-Video and the even higher-quality component video. In all of these video formats, audio is carried on a separate connection.

Communication channel Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used to convey an information signal, for example a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

cdmaOne

Interim Standard 95 (IS-95) was the first ever CDMA-based digital cellular technology. It was developed by Qualcomm and later adopted as a standard by the Telecommunications Industry Association in TIA/EIA/IS-95 release published in 1995. The proprietary name for IS-95 is cdmaOne.

Terrestrial Trunked Radio, a European standard for a trunked radio system, is a professional mobile radio and two-way transceiver specification. TETRA was specifically designed for use by government agencies, emergency services, for public safety networks, rail transport staff for train radios, transport services and the military. TETRA is the European version of trunked radio, similar to Project 25.

Space-division multiple access Channel-access method in communications

Space-division multiple access (SDMA) is a channel access method based on creating parallel spatial pipes using advanced antenna technology next to higher capacity pipes through spatial multiplexing and/or diversity, by which it is able to offer superior performance in radio multiple access communication systems. In traditional mobile cellular network systems, the base station has no information on the position of the mobile units within the cell and radiates the signal in all directions within the cell in order to provide radio coverage. This method results in wasting power on transmissions when there are no mobile units to reach, in addition to causing interference for adjacent cells using the same frequency, so called co-channel cells. Likewise, in reception, the antenna receives signals coming from all directions including noise and interference signals. By using smart antenna technology and differing spatial locations of mobile units within the cell, space-division multiple access techniques offer attractive performance enhancements. The radiation pattern of the base station, both in transmission and reception, is adapted to each user to obtain highest gain in the direction of that user. This is often done using phased array techniques.

IS-54 and IS-136 are second-generation (2G) mobile phone systems, known as Digital AMPS (D-AMPS), and a further development of the North American 1G mobile system Advanced Mobile Phone System (AMPS). It was once prevalent throughout the Americas, particularly in the United States and Canada since the first commercial network was deployed in 1993. D-AMPS is considered end-of-life, and existing networks have mostly been replaced by GSM/GPRS or CDMA2000 technologies.

Base station

Base station is – according to the International Telecommunication Union's (ITU) Radio Regulations (RR) – a "land station in the land mobile service."

Base station subsystem Section of celullar telephone network

The base station subsystem (BSS) is the section of a traditional cellular telephone network which is responsible for handling traffic and signaling between a mobile phone and the network switching subsystem. The BSS carries out transcoding of speech channels, allocation of radio channels to mobile phones, paging, transmission and reception over the air interface and many other tasks related to the radio network.

Cellular network Communication network

A cellular network or mobile network is a communication network where the link to and from end nodes is wireless. The network is distributed over land areas called "cells", each served by at least one fixed-location transceiver. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.

In the GSM cellular mobile phone standard, timing advance (TA) value corresponds to the length of time a signal takes to reach the base station from a mobile phone. GSM uses TDMA technology in the radio interface to share a single frequency between several users, assigning sequential timeslots to the individual users sharing a frequency. Each user transmits periodically for less than one-eighth of the time within one of the eight timeslots. Since the users are at various distances from the base station and radio waves travel at the finite speed of light, the precise arrival-time within the slot can be used by the base station to determine the distance to the mobile phone. The time at which the phone is allowed to transmit a burst of traffic within a timeslot must be adjusted accordingly to prevent collisions with adjacent users. Timing Advance (TA) is the variable controlling this adjustment.

E-UTRA

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access, also referred to as the 3GPP work item on the Long Term Evolution (LTE) also known as the Evolved Universal Terrestrial Radio Access (E-UTRA) in early drafts of the 3GPP LTE specification. E-UTRAN is the initialism of Evolved UMTS Terrestrial Radio Access Network and is the combination of E-UTRA, user equipment (UE), and E-UTRAN Node B or Evolved Node B (eNodeB).

MPT 1327 is an industry standard for trunked radio communications networks.

Synchronization Channel is a downlink only control channel used in GSM cellular telephone systems. It is part of the Um air interface specification. The purpose of the SCH is to allow the mobile station (handset) to quickly identify a nearby cell and synchronize to that BTS's TDMA structures. Each radio burst on the SCH contains:

Radio Technology of using radio waves to carry information

Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.

The Um interface is the air interface for the GSM mobile telephone standard. It is the interface between the mobile station (MS) and the Base transceiver station (BTS). It is called Um because it is the mobile analog to the U interface of ISDN. Um is defined in the GSM 04.xx and 05.xx series of specifications. Um can also support GPRS packet-oriented communication.

GSM radio frequency optimization is the optimization of GSM radio frequencies. GSM network consist of different cells and each cell transmit signals to and receive signals from the mobile station, for proper working of base station many parameters are defined before functioning the base station such as the coverage area of a cell depends on different factors including the transmitting power of the base station, obstructing buildings in cells, height of the base station and location of base station. Radio Frequency Optimization is a process through which different soft and hard parameters of the Base transceiver stations are changed in order to improve the coverage area and improve quality of signal. Besides that there are various key performance indicators which have to be constantly monitored and necessary changes proposed in order to keep KPIs in agreed limits with the mobile operator.

References

  1. Eberspächer, Jörg (2001). GSM Switching, Services and Protocols, Second Edition. John Wiley & Sons Ltd.