Cooling flow

Last updated

A cooling flow occurs when the intracluster medium (ICM) in the centres of galaxy clusters should be rapidly cooling at the rate of tens to thousands of solar masses per year. [1] This should happen as the ICM (a plasma) is quickly losing its energy by the emission of X-rays. The X-ray brightness of the ICM is proportional to the square of its density, which rises steeply towards the centres of many clusters. Also the temperature falls to typically a third or a half of the temperature in the outskirts of the cluster. The typical [predicted] timescale for the ICM to cool is relatively short, less than a billion years. As material in the centre of the cluster cools out, the pressure of the overlying ICM should cause more material to flow inwards (the cooling flow).

Contents

In a steady state, the rate of mass deposition, i.e. the rate at which the plasma cools, is given by

where L is the bolometric (i.e. over the entire spectrum) luminosity of the cooling region, T is its temperature, k is the Boltzmann constant and μm is the mean molecular mass.

Cooling flow problem

It is currently thought that the very large amounts of expected cooling are in reality much smaller, as there is little evidence for cool X-ray emitting gas in many of these systems. [2] This is the cooling flow problem. Theories for why there is little evidence of cooling include [3]

Heating by AGN is the most popular explanation, as they emit a lot of energy over their lifetimes, and some of the alternatives listed have theoretical problems.

Related Research Articles

The study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, that clustering and merging allows galaxies to accumulate mass, determining both their shape and structure. Hydrodynamics simulation, which simulates both baryons and dark matter, is widely used to study galaxy formation and evolution.

<span class="mw-page-title-main">Galaxy groups and clusters</span> Largest known gravitationally bound object in universe; aggregation of galaxies

Galaxy groups and clusters are the largest known gravitationally bound objects to have arisen thus far in the process of cosmic structure formation. They form the densest part of the large-scale structure of the Universe. In models for the gravitational formation of structure with cold dark matter, the smallest structures collapse first and eventually build the largest structures, clusters of galaxies. Clusters are then formed relatively recently between 10 billion years ago and now. Groups and clusters may contain ten to thousands of individual galaxies. The clusters themselves are often associated with larger, non-gravitationally bound, groups called superclusters.

<span class="mw-page-title-main">Star formation</span> Process by which dense regions of molecular clouds in interstellar space collapse to form stars

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that the luminosity is not produced by stars. Such excess, non-stellar emissions have been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an active galaxy. The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy.

<span class="mw-page-title-main">Messier 87</span> Elliptical galaxy in the Virgo Galaxy Cluster

Messier 87 is a supergiant elliptical galaxy in the constellation Virgo that contains several trillion stars. One of the largest and most massive galaxies in the local universe, it has a large population of globular clusters—about 15,000 compared with the 150–200 orbiting the Milky Way—and a jet of energetic plasma that originates at the core and extends at least 1,500 parsecs, traveling at a relativistic speed. It is one of the brightest radio sources in the sky and a popular target for both amateur and professional astronomers.

The Sunyaev–Zeldovich effect is the spectral distortion of the cosmic microwave background (CMB) through inverse Compton scattering by high-energy electrons in galaxy clusters, in which the low-energy CMB photons receive an average energy boost during collision with the high-energy cluster electrons. Observed distortions of the cosmic microwave background spectrum are used to detect the disturbance of density in the universe. Using the Sunyaev–Zeldovich effect, dense clusters of galaxies have been observed.

In astronomy, the intracluster medium (ICM) is the superheated plasma that permeates a galaxy cluster. The gas consists mainly of ionized hydrogen and helium and accounts for most of the baryonic material in galaxy clusters. The ICM is heated to temperatures on the order of 10 to 100 megakelvins, emitting strong X-ray radiation.

The Cloverleaf quasar is a bright, gravitationally lensed quasar.

<span class="mw-page-title-main">NGC 6166</span> Galaxy in the constellation Hercules

NGC 6166 is an elliptical galaxy in the Abell 2199 cluster. It lies 490 million light years away in the constellation Hercules. The primary galaxy in the cluster, it is one of the most luminous galaxies known in terms of X-ray emissions.

<span class="mw-page-title-main">RX J1347.5−1145</span> Galaxy cluster in the constellation Virgo

RX J1347.5–1145 is one of the most massive galaxy clusters known discovered in X-rays with ROSAT. As a result, it is also one of the most X-ray-luminous because of its hot gas content. The object resides roughly 5 billion light-years away from the Solar System in the constellation of Virgo. Redshift was noted as z=0.451 with an X-ray luminosity of 1045 ergs s−1 in a paper from 2002. In 2013, one study found eight cases of the same object resulting from the intense gravitational bending of light, which makes it possible to identify a series of remote galaxies located inside the galaxy cluster with calculations from the photometric method between 5.5 and 7.5. That study made use of data from Cluster Lensing and Supernova survey with Hubble (CLASH) as well as other sources. The colors in the galaxy cluster are known to correspond with the level of brightness, or the number of electrons trapped in the examined wavelength range of the cluster, with the colors red, orange, and yellow as high intensity, blue-green and green as medium intensity, and blue and violet as low intensity. It is considered one of the brightest objects that is known by X-ray.

<span class="mw-page-title-main">NGC 3862</span> Galaxy in the constellation Leo

NGC 3862 is an elliptical galaxy located 300 million light-years away in the constellation Leo. Discovered by astronomer William Herschel on April 27, 1785, NGC 3862 is an outlying member of the Leo Cluster.

<span class="mw-page-title-main">NGC 3860</span> Spiral galaxy in the constellation Leo

NGC 3860 is a spiral galaxy located about 340 million light-years away in the constellation Leo. NGC 3860 was discovered by astronomer William Herschel on April 27, 1785. The galaxy is a member of the Leo Cluster and is a low-luminosity AGN (LLAGN). Gavazzi et al. however classified NGC 3860 as a strong AGN which may have been triggered by a supermassive black hole in the center of the galaxy.

<span class="mw-page-title-main">NGC 708</span> Galaxy in the constellation Andromeda

NGC 708 is an elliptical galaxy located 240 million light-years away in the constellation Andromeda and was discovered by astronomer William Herschel on September 21, 1786. It is classified as a cD galaxy and is the brightest member of Abell 262. NGC 708 is a weak FR I radio galaxy and is also classified as a type 2 Seyfert galaxy.

<span class="mw-page-title-main">NGC 703</span> Galaxy in the constellation Andromeda

NGC 703 is a lenticular galaxy located 240 million light-years away in the constellation Andromeda. The galaxy was discovered by astronomer William Herschel on September 21, 1786 and is also a member of Abell 262.

<span class="mw-page-title-main">NGC 4636</span> Galaxy in the constellation Virgo

NGC 4636 is an elliptical galaxy located in the constellation Virgo. It is a member of the NGC 4753 Group of galaxies, which is a member of the Virgo II Groups, a series of galaxies and galaxy clusters strung out from the southern edge of the Virgo Supercluster. It is located at a distance of about 55 million light years from Earth, which, given its apparent dimensions, means that NGC 4636 is about 105,000 light years across.

<span class="mw-page-title-main">NGC 5846</span> Galaxy in the constellation Virgo

NGC 5846 is an elliptical galaxy located in the constellation Virgo. It is located at a distance of circa 90 million light years from Earth, which, given its apparent dimensions, means that NGC 5846 is about 110,000 light years across. It was discovered by William Herschel on February 24, 1786. It lies near 110 Virginis and is part of the Herschel 400 Catalogue. It is a member of the NGC 5846 Group of galaxies, itself one of the Virgo III Groups strung out to the east of the Virgo Supercluster of galaxies.

<span class="mw-page-title-main">NGC 1386</span> Galaxy in the constellation Eridanus

NGC 1386 is a spiral galaxy located in the constellation Eridanus. It is located at a distance of circa 53 million light years from Earth, which, given its apparent dimensions, means that NGC 1386 is about 50,000 light years across. It is a Seyfert galaxy, the only one in Fornax Cluster.

<span class="mw-page-title-main">NGC 4278</span> Galaxy in the constellation Coma Berenices

NGC 4278 is an elliptical galaxy located in the constellation Coma Berenices. It is located at a distance of circa 55 million light years from Earth, which, given its apparent dimensions, means that NGC 4278 is about 65,000 light years across. It was discovered by William Herschel on March 13, 1785. NGC 4278 is part of the Herschel 400 Catalogue and can be found about one and 3/4 of a degree northwest of Gamma Comae Berenices even with a small telescope.

<span class="mw-page-title-main">NGC 4302</span> Galaxy in the constellation Coma Berenices

NGC 4302 is an edge-on spiral galaxy located about 55 million light-years away in the constellation Coma Berenices. It was discovered by astronomer William Herschel on April 8, 1784 and is a member of the Virgo Cluster.

References

  1. Fabian, A. C. (1994). "Cooling flows in clusters of galaxies". Annu. Rev. Astron. Astrophys. 32: 277–318. Bibcode:1994ARA&A..32..277F. doi:10.1146/annurev.aa.32.090194.001425.
  2. Peterson, J. R.; Kahn, S. M.; Paerels, F. B. S.; Kaastra, J. S.; Tamura, T.; Bleeker, J. A. M.; Ferrigno, C.; Jernigan, J. G. (2003-06-10). "High-Resolution X-Ray Spectroscopic Constraints on Cooling-Flow Models for Clusters of Galaxies". The Astrophysical Journal. 590 (1): 207–224. arXiv: astro-ph/0210662 . Bibcode:2003ApJ...590..207P. doi:10.1086/374830. ISSN   0004-637X. S2CID   18000290.
  3. Peterson, J.R.; Fabian, A.C. (2006). "X-ray spectroscopy of cooling clusters". Physics Reports. 427 (1): 1–39. arXiv: astro-ph/0512549 . Bibcode:2006PhR...427....1P. doi:10.1016/j.physrep.2005.12.007. ISSN   0370-1573. S2CID   11711221.

Further reading