Cophasing

Last updated

In astronomy, the term cophasing or phasing describes the process of controlling the individual segments in a segmented mirror or a telescope so that the segments form a larger composite mirroring surface. Cophasing implies precise, active control of three degrees of freedom of each individual segment mirror: translation along the optical axis (piston) and rotation about two axes perpendicular to the optical axis (tip-tilt). [1]

Each segment of the segmented telescope is a solid body having 6 degrees of freedom exposed to the gravitation force, wind blowing, and other mechanical forces. If the position of each segment is not controlled the resolution of the whole telescope will be the same as if telescope had the diameter equal to the size of one segment. To achieve a resolution commensurable with that of a monolithic telescope of the same diameter the segmented surface must be controlled with a precision better than surface rms.

Projects for future extremely large telescopes (ELTs) generally depend on the use of a segmented primary mirror. While the basic technologies required for segmented telescopes have been demonstrated for the 10m Keck telescope or GTC telescope, ELTs of diameters form 50 to 100 m represent a qualitative change with respect to wave front control related to segmentation in comparison with the current 10 meters technology.

Related Research Articles

<span class="mw-page-title-main">Primary mirror</span> Main light-gathering source of reflecting telescope

A primary mirror is the principal light-gathering surface of a reflecting telescope.

<span class="mw-page-title-main">Binoculars</span> Pair of telescopes mounted side-by-side

Binoculars or field glasses are two refracting telescopes mounted side-by-side and aligned to point in the same direction, allowing the viewer to use both eyes when viewing distant objects. Most binoculars are sized to be held using both hands, although sizes vary widely from opera glasses to large pedestal-mounted military models.

<span class="mw-page-title-main">Very Large Telescope</span> Telescope in the Atacama Desert, Chile

The Very Large Telescope (VLT) is a telescope facility operated by the European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. It consists of four individual telescopes, each with a primary mirror 8.2 m across, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal, and Yepun, which are all words for astronomical objects in the Mapuche language. The telescopes form an array complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture.

<span class="mw-page-title-main">Overwhelmingly Large Telescope</span> Proposed extremely large telescope

The Overwhelmingly Large Telescope (OWL) was a conceptual design by the European Southern Observatory (ESO) organization for an extremely large telescope, which was intended to have a single aperture of 100 meters in diameter. Because of the complexity and cost of building a telescope of this unprecedented size, ESO has elected to focus on the 39-meter diameter Extremely Large Telescope instead.

<span class="mw-page-title-main">Interferometry</span> Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, remote sensing, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

<span class="mw-page-title-main">W. M. Keck Observatory</span> Astronomical observatory located in Hawaii

The W. M. Keck Observatory is an astronomical observatory with two telescopes at an elevation of 4,145 meters (13,600 ft) near the summit of Mauna Kea in the U.S. state of Hawaii. Both telescopes have 10 m (33 ft) aperture primary mirrors, and when completed in 1993 and 1996 were the largest astronomical telescopes in the world. They are currently the 3rd and 4th largest.

<span class="mw-page-title-main">Active optics</span> Shaping technology for reflecting telescopes

Active optics is a technology used with reflecting telescopes developed in the 1980s, which actively shapes a telescope's mirrors to prevent deformation due to external influences such as wind, temperature, and mechanical stress. Without active optics, the construction of 8 metre class telescopes is not possible, nor would telescopes with segmented mirrors be feasible.

<span class="mw-page-title-main">Adaptive optics</span> Technique used in optical systems

Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of incoming wavefront distortions by deforming a mirror in order to compensate for the distortion. It is used in astronomical telescopes and laser communication systems to remove the effects of atmospheric distortion, in microscopy, optical fabrication and in retinal imaging systems to reduce optical aberrations. Adaptive optics works by measuring the distortions in a wavefront and compensating for them with a device that corrects those errors such as a deformable mirror or a liquid crystal array.

<span class="mw-page-title-main">Optical telescope</span> Telescope for observations with visible light

An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.

<span class="mw-page-title-main">Reflecting telescope</span> Telescopes which utilize curved mirrors to form an image

A reflecting telescope is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic aberration. Although reflecting telescopes produce other types of optical aberrations, it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors. Many variant forms are in use and some employ extra optical elements to improve image quality or place the image in a mechanically advantageous position. Since reflecting telescopes use mirrors, the design is sometimes referred to as a catoptric telescope.

<span class="mw-page-title-main">Southern African Large Telescope</span>

The Southern African Large Telescope (SALT) is a 9.2-metre optical telescope designed mainly for spectroscopy. It consists of 91 hexagonal mirror segments each with a 1-metre inscribed diameter, resulting in a total hexagonal mirror of 11.1 by 9.8 m. However, it's effective aperture is only 9.2 m. It is located close to the town of Sutherland in the semi-desert region of the Karoo, South Africa. It is a facility of the South African Astronomical Observatory, the national optical observatory of South Africa.

<span class="mw-page-title-main">William Herschel Telescope</span> Telescope in La Palma, Spain

The William Herschel Telescope (WHT) is a 4.20-metre (165 in) optical/near-infrared reflecting telescope located at the Roque de los Muchachos Observatory on the island of La Palma in the Canary Islands, Spain. The telescope, which is named after William Herschel, the discoverer of the planet Uranus, is part of the Isaac Newton Group of Telescopes. It is funded by research councils from the United Kingdom, the Netherlands and Spain.

<span class="mw-page-title-main">Giant Magellan Telescope</span> Telescope under construction in Chile

The Giant Magellan Telescope (GMT) is a ground-based extremely large telescope under construction, as part of the US Extremely Large Telescope Program (US-ELTP), as of 2022. It will consist of seven 8.4 m (27.6 ft) diameter primary segments, that will observe optical and near infrared (320–25000 nm) light, with the resolving power of a 24.5 m (80.4 ft) primary mirror and collecting area equivalent to a 22.0 m (72.2 ft) one, which is about 368 square meters. The telescope is expected to have a resolving power 10 times that of the Hubble Space Telescope and four times that of the James Webb Space Telescope, although it will be unable to image in the same infrared frequencies available to telescopes in space. As of May 2021, six mirrors have been cast and the construction of the summit facility has begun.

<span class="mw-page-title-main">Extremely Large Telescope</span> Major astronomical facility in Chile

The Extremely Large Telescope (ELT) is an astronomical observatory currently under construction. When completed, it is planned to be the world's largest optical/near-infrared extremely large telescope. Part of the European Southern Observatory (ESO) agency, it is located on top of Cerro Armazones in the Atacama Desert of northern Chile.

<span class="mw-page-title-main">Astronomical interferometer</span> Array used for astronomical observations

An astronomical interferometer or telescope array is a set of separate telescopes, mirror segments, or radio telescope antennas that work together as a single telescope to provide higher resolution images of astronomical objects such as stars, nebulas and galaxies by means of interferometry. The advantage of this technique is that it can theoretically produce images with the angular resolution of a huge telescope with an aperture equal to the separation between the component telescopes. The main drawback is that it does not collect as much light as the complete instrument's mirror. Thus it is mainly useful for fine resolution of more luminous astronomical objects, such as close binary stars. Another drawback is that the maximum angular size of a detectable emission source is limited by the minimum gap between detectors in the collector array.

<span class="mw-page-title-main">Segmented mirror</span> Array of smaller mirrors designed to act as one large curved mirror

A segmented mirror is an array of smaller mirrors designed to act as segments of a single large curved mirror. The segments can be either spherical or asymmetric. They are used as objectives for large reflecting telescopes. To function, all the mirror segments have to be polished to a precise shape and actively aligned by a computer-controlled active optics system using actuators built into the mirror support cell.

<span class="mw-page-title-main">Deformable mirror</span>

Deformable mirrors (DM) are mirrors whose surface can be deformed, in order to achieve wavefront control and correction of optical aberrations. Deformable mirrors are used in combination with wavefront sensors and real-time control systems in adaptive optics. In 2006 they found a new use in femtosecond pulse shaping.

<span class="mw-page-title-main">Extremely large telescope</span> 20-100-m-aperture astronomical observatory

An extremely large telescope (ELT) is an astronomical observatory featuring an optical telescope with an aperture for its primary mirror from 20 metres up to 100 metres across, when discussing reflecting telescopes of optical wavelengths including ultraviolet (UV), visible, and near infrared wavelengths. Among many planned capabilities, extremely large telescopes are planned to increase the chance of finding Earth-like planets around other stars. Telescopes for radio wavelengths can be much bigger physically, such as the 300 metres aperture fixed focus radio telescope of the Arecibo Observatory. Freely steerable radio telescopes with diameters up to 100 metres have been in operation since the 1970s.

<span class="mw-page-title-main">Large Ultraviolet Optical Infrared Surveyor</span> Proposed NASA space telescope

The Large Ultraviolet Optical Infrared Surveyor, commonly known as LUVOIR, is a multi-wavelength space telescope concept being developed by NASA under the leadership of a Science and Technology Definition Team. It is one of four large astrophysics space mission concepts studied in preparation for the National Academy of Sciences 2020 Astronomy and Astrophysics Decadal Survey.

References

  1. Cheetham, Anthony C.; et al. (December 2012). "Fizeau interferometric cophasing of segmented mirrors". Optics Express. 20 (28): 29457–29471. Bibcode:2012OExpr..2029457C. doi: 10.1364/OE.20.029457 . PMID   23388772.