A segmented mirror is an array of smaller mirrors designed to act as segments of a single large curved mirror. The segments can be either spherical or asymmetric (if they are part of a larger parabolic reflector [1] ). They are used as objectives for large reflecting telescopes. To function, all the mirror segments have to be polished to a precise shape and actively aligned by a computer-controlled active optics system using actuators built into the mirror support cell.
The concept was pioneered by Guido Horn D'Arturo, who built the first working segmented mirror in 1952, after twenty years of research; [2] It was later independently rediscovered and further developed under the leadership of Dr. Jerry Nelson at the Lawrence Berkeley National Laboratory and University of California during the 1980s[ citation needed ], and since then all the necessary technologies have spread worldwide to the point that essentially all future large optical telescopes plan to use segmented mirrors.
There is a technological limit for primary mirrors made of a single rigid piece of glass. Such non-segmented, or monolithic mirrors can not be constructed larger than about eight meters in diameter. The largest monolithic mirrors in use are currently the two primary mirrors of the Large Binocular Telescope, each with a diameter of 8.4 meters. The use of segmented mirrors is therefore a key component for large-aperture telescopes. [3] [4] Using a monolithic mirror much larger than 5 meters is prohibitively expensive due to the cost of both the mirror, and the massive structure needed to support it. A mirror beyond that size would also sag slightly under its own weight as the telescope was rotated to different positions, [5] [6] changing the precision shape of the surface. Segments are also easier to fabricate, transport, install, and maintain over very large monolithic mirrors.
Segmented mirrors do have the drawback that each segment may require some precise asymmetrical shape, and rely on a complicated computer-controlled mounting system. All of the segments also cause diffraction effects in the final image.
Another application for segmented mirrors can be found in the augmented reality sector to minimize the size of the optical components. A partial reflective segmented mirror array is used by tooz to out-couple the light from their light guides, which is used as an optical smartglass element. [7]
Some of the largest optical telescopes in the world use segmented primary mirrors. These include, but are not limited to the following telescopes:
The twin Keck Telescopes are the most prominent of the Mauna Kea Observatories at an elevation of 4,145 meters (13,600 ft) near the summit of Mauna Kea in Hawaii, United States. Both telescopes feature 10 m (33 ft) primary mirrors.
The Hobby-Eberly Telescope (HET) is a 9.2-meter (30-foot) telescope located at the McDonald Observatory, West Texas at an altitude of 2,026 m (6,647 ft). Its primary mirror is constructed from 91 hexagonal segments. The telescope's main mirror is fixed at a 55 degree angle and can rotate around its base. A target is tracked by moving the instruments at the focus of the telescope; this allows access to about 70–81% of the sky at its location and a single target can be tracked for up to two hours.
The Southern African Large Telescope (SALT) is a 10-meter telescope dedicated on spectroscopy for most of its observing time. It shares similarities with the Hobby-Eberly Telescope and also consists of 91 hexagonal mirror segments, each 1 meter across, resulting in a total hexagonal mirror of 11.1 m by 9.8 m. [8] It is located close to the town of Sutherland in the semi-desert region of the Karoo, South Africa. It is a facility of the South African Astronomical Observatory, the national optical observatory of South Africa.
Also known as the GranTeCan, the Canaries Great Telescope uses a total of 36 segmented mirrors. [9] [10] With a primary mirror of 10.4 m (34 ft), it is currently the world's largest optical telescope, located at the Roque de los Muchachos Observatory on the island of La Palma, in the Canary Islands in Spain.
The Large Sky Area Multi-Object Fibre Spectroscopic Telescope is a survey telescope located in the Hebei Province of China. It consists of two rectangular mirrors, made up of 24 and 37 segments, respectively. Each hexagonal segment is 1.1 metre in size.
The 18 mirror segments of the James Webb Space Telescope were mostly fabricated in 2011. [11] The space telescope was launched by an Ariane 5 from Guiana Space Centre on December 25, 2021. [12]
Three extremely large telescopes will be the next generation of segmented-mirror telescopes and are planned to be commissioned in the 2020s. The Giant Magellan Telescope uses seven large segments and is either grouped with segmented mirrors telescopes or its own category. The Thirty Meter Telescope is to be built at the Mauna Kea Observatories in Hawaii, though construction is on hold. This will use 492 hexagonal segments. The Extremely Large Telescope will be the largest of all three, using a total of 798 segments for its primary mirror. Its first light is expected for 2028. [13] [14]
Images from telescopes with segmented mirrors also exhibit diffraction spikes due to diffraction from the mirrors' edges. As before, two spikes are perpendicular to each edge orientation, resulting in six spikes (plus two fainter ones due to the spider supporting the secondary mirror) in photographs taken by the James Webb Space Telescope. [15]
A primary mirror is the principal light-gathering surface of a reflecting telescope.
Infrared astronomy is a sub-discipline of astronomy which specializes in the observation and analysis of astronomical objects using infrared (IR) radiation. The wavelength of infrared light ranges from 0.75 to 300 micrometers, and falls in between visible radiation, which ranges from 380 to 750 nanometers, and submillimeter waves.
Timeline of telescopes, observatories, and observing technology.
The Very Large Telescope (VLT) is an astronomical facility operated since 1998 by the European Southern Observatory, located on Cerro Paranal in the Atacama Desert of northern Chile. It consists of four individual telescopes, each equipped with a primary mirror that measures 8.2 meters in diameter. These optical telescopes, named Antu, Kueyen, Melipal, and Yepun, are generally used separately but can be combined to achieve a very high angular resolution. The VLT array is also complemented by four movable Auxiliary Telescopes (ATs) with 1.8-meter apertures.
The Overwhelmingly Large Telescope (OWL) was a conceptual design by the European Southern Observatory (ESO) organization for an extremely large telescope, which was intended to have a single aperture of 100 meters in diameter. Because of the complexity and cost of building a telescope of this unprecedented size, ESO has decided to focus on the 39-meter diameter Extremely Large Telescope instead.
Subaru Telescope is the 8.2-metre (320 in) telescope of the National Astronomical Observatory of Japan, located at the Mauna Kea Observatory on Hawaii. It is named after the open star cluster known in English as the Pleiades. It had the largest monolithic primary mirror in the world from its commissioning until the Large Binocular Telescope opened in 2005.
The W. M. Keck Observatory is an astronomical observatory with two telescopes at an elevation of 4,145 meters (13,600 ft) near the summit of Mauna Kea in the U.S. state of Hawaii. Both telescopes have 10 m (33 ft) aperture primary mirrors, and, when completed in 1993 and 1996, they were the largest optical reflecting telescopes in the world. They have been the third and fourth largest since 2006.
A Ritchey–Chrétien telescope is a specialized variant of the Cassegrain telescope that has a hyperbolic primary mirror and a hyperbolic secondary mirror designed to eliminate off-axis optical errors (coma). The RCT has a wider field of view free of optical errors compared to a more traditional reflecting telescope configuration. Since the mid 20th century, a majority of large professional research telescopes have been Ritchey–Chrétien configurations; some well-known examples are the Hubble Space Telescope, the Keck telescopes and the ESO Very Large Telescope.
Active optics is a technology used with reflecting telescopes developed in the 1980s, which actively shapes a telescope's mirrors to prevent deformation due to external influences such as wind, temperature, and mechanical stress. Without active optics, the construction of 8 metre class telescopes is not possible, nor would telescopes with segmented mirrors be feasible.
The Mauna Kea Observatories (MKO) are a group of independent astronomical research facilities and large telescope observatories that are located at the summit of Mauna Kea on the Big Island of Hawaiʻi, United States. The facilities are located in a 525-acre (212 ha) special land use zone known as the "Astronomy Precinct", which is located within the 11,228-acre (4,544 ha) Mauna Kea Science Reserve. The Astronomy Precinct was established in 1967 and is located on land protected by the Historical Preservation Act for its significance to Hawaiian culture. The presence and continued construction of telescopes is highly controversial due to Mauna Kea's centrality in native Hawaiian religion and culture, as well as for a variety of environmental reasons.
The Gran Telescopio Canarias is a 10.4 m (410 in) reflecting telescope located at the Roque de los Muchachos Observatory on the island of La Palma, in the Canary Islands, Spain. It is the world's largest single-aperture optical telescope.
The Gemini Observatory comprises two 8.1-metre (26.6 ft) telescopes, Gemini North and Gemini South, situated in Hawaii and Chile, respectively. These twin telescopes offer extensive coverage of the northern and southern skies and rank among the most advanced optical/infrared telescopes available to astronomers. (See List of largest optical reflecting telescopes).
Paranal Observatory is an astronomical observatory operated by the European Southern Observatory (ESO). It is located in the Atacama Desert of Northern Chile on Cerro Paranal at 2,635 m (8,645 ft) altitude, 120 km (70 mi) south of Antofagasta. By total light-collecting area, it is the largest optical-infrared observatory in the Southern Hemisphere; worldwide, it is second to the Mauna Kea Observatory on Hawaii.
The Extremely Large Telescope (ELT) is an astronomical observatory under construction. When completed, it will be the world's largest optical and near-infrared extremely large telescope. Part of the European Southern Observatory (ESO) agency, it is located on top of Cerro Armazones in the Atacama Desert of northern Chile.
The Thirty Meter Telescope (TMT) is a planned extremely large telescope (ELT) proposed to be built on Mauna Kea, on the island of Hawai'i. The TMT would become the largest visible-light telescope on Mauna Kea.
An extremely large telescope (ELT) is an astronomical observatory featuring an optical telescope with an aperture for its primary mirror from 20 metres up to 100 metres across, when discussing reflecting telescopes of optical wavelengths including ultraviolet (UV), visible, and near infrared wavelengths. Among many planned capabilities, extremely large telescopes are planned to increase the chance of finding Earth-like planets around other stars. Telescopes for radio wavelengths can be much bigger physically, such as the 300 metres aperture fixed focus radio telescope of the Arecibo Observatory. Freely steerable radio telescopes with diameters up to 100 metres have been in operation since the 1970s.
Charles Mattias ("Matt") Mountain is currently the President of the Association of Universities for Research in Astronomy (AURA) which designs, builds, and operates telescopes and observatories for the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). AURA's NASA center is the Space Telescope Science Institute (STScI), responsible for the science mission for the Hubble Space Telescope, the science and operations for the James Webb Space Telescope, and the MAST data archive. AURA's NSF centers are Gemini Observatory, the National Optical Astronomy Observatory (NOAO), and the National Solar Observatory (NSO). Dr. Mountain and AURA are also responsible for the NSF construction projects: the Daniel K. Inouye Solar Telescope (DKIST) on Haleakalā, Hawaii and the Large Synoptic Survey Telescope (LSST) on Cerro Pachón in Chile.
Optical Telescope Element (OTE) is a sub-section of the James Webb Space Telescope, a large infrared space telescope launched on 25 December 2021, consisting of its main mirror, secondary mirrors, the framework and controls to support the mirrors, and various thermal and other systems.
Guido Horn d'Arturo was an Italian astronomer born in Trieste, then part of the Austrian Empire. He obtained Italian citizenship after serving as a volunteer in the Italian army during the First World War. To avoid being persecuted as an irredentist by the Austrian authorities, he officially added to his surname Horn that of "d'Arturo" which he used in the war.
{{cite journal}}
: Cite journal requires |journal=
(help)