Copy detection pattern

Last updated

A copy detection pattern (CDP) [1] or graphical code [2] [3] is a small random or pseudo-random digital image which is printed on documents, labels or products for counterfeit detection. Authentication is made by scanning the printed CDP using an image scanner or mobile phone camera. [4] It is possible to store additional product-specific data into the CDP that will be decoded during the scanning process. [5] A CDP can also be inserted into a 2D barcode to facilitate smartphone authentication and to connect with traceability data. [6]

Contents

Principle

The detection of counterfeits using a CDP relies on an "information loss principle", [7] which states that every time a digital image is printed or scanned, some information about the original digital image is lost. A CDP is a maximum entropy image that attempts to take advantage of this information loss. Since producing a counterfeit CDP requires an additional scanning and printing processes, it will have less information than an original CDP. By measuring the information in the scanned CDP, the detector can determine whether the CDP is an original print or a copy.

CDPs aim to address limitations of optical security features such as security holograms. They are motivated by the need for security features that can be originated, managed and transferred digitally, and that are machine readable. [1] Contrarily to many traditional security printing techniques, CDPs do not rely on Security by Obscurity, [8] as the algorithm for generating CDPs can be public as long as the key used to generate it or the digital CDP is not revealed. [9]

CDPs have also been described as a type of optical physical unclonable function. [2] While they have been cited as a "powerful tool to detect copies", [10] it is noted however that CDPs "require an extensive knowledge of printing technologies" [11] because the printing process introduces variation that is foundational to copy detection.

A digital CDP (100x100 pixel binary image) is printed at 600 pixels per inch (ppi) on a Canon C6045 laser printer. The original CDP real image size is 4.2mm x 4.2mm. This original CDP was scanned at 2400 ppi with a CanoScan 9000F flatbed scanner. The scan was processed with GIMP for image restoration, then printed on the same Canon C6045 laser printer. The copied CDP real image size is also 4.2mm x 4.2mm. Comparison of the original and copied CDP reveals a loss of details in the latter. Cdp digital original copy.png
A digital CDP (100x100 pixel binary image) is printed at 600 pixels per inch (ppi) on a Canon C6045 laser printer. The original CDP real image size is 4.2mm x 4.2mm. This original CDP was scanned at 2400 ppi with a CanoScan 9000F flatbed scanner. The scan was processed with GIMP for image restoration, then printed on the same Canon C6045 laser printer. The copied CDP real image size is also 4.2mm x 4.2mm. Comparison of the original and copied CDP reveals a loss of details in the latter.

Security assessment

The theoretical and practical assessment of the security level of CDPs, in other words the detector's ability to detect counterfeit attempts, is an ongoing area of research:

Applications

CDPs are used for different physical item authentication applications:

The EURion constellation and digital watermarks are inserted into banknotes to be detected by scanners, photocopiers and image processing software. However the objective of these techniques is not to detect whether a given banknote is a counterfeit, but to deter amateur counterfeiters from reproducing banknotes by blocking the device or software used to make the counterfeit. [25]

Digital watermarks may be used as well to differentiate original prints from counterfeits. [26] [27] A digital watermark may also be inserted into a 2D barcode. [28] The fundamental difference between digital watermarks and CDPs is that a digital watermark must be embedded into an existing image while respecting a fidelity constraint, while the CDP does not have such constraint. [29]

Related Research Articles

Malware is any software intentionally designed to cause disruption to a computer, server, client, or computer network, leak private information, gain unauthorized access to information or systems, deprive access to information, or which unknowingly interferes with the user's computer security and privacy. Researchers tend to classify malware into one or more sub-types.

Steganography is the practice of representing information within another message or physical object, in such a manner that the presence of the information is not evident to human inspection. In computing/electronic contexts, a computer file, message, image, or video is concealed within another file, message, image, or video. The word steganography comes from Greek steganographia, which combines the words steganós, meaning "covered or concealed", and -graphia meaning "writing".

<span class="mw-page-title-main">Authentication</span> Act of proving an assertion, often the identity of a computer system user

Authentication is the act of proving an assertion, such as the identity of a computer system user. In contrast with identification, the act of indicating a person or thing's identity, authentication is the process of verifying that identity. It might involve validating personal identity documents, verifying the authenticity of a website with a digital certificate, determining the age of an artifact by carbon dating, or ensuring that a product or document is not counterfeit.

<span class="mw-page-title-main">Barcode reader</span> Electronic device

A barcode reader or barcode scanner is an optical scanner that can read printed barcodes, decode the data contained in the barcode on a computer. Like a flatbed scanner, it consists of a light source, a lens, and a light sensor for translating optical impulses into electrical signals. Additionally, nearly all barcode readers contain decoder circuitry that can analyse the barcode's image data provided by the sensor and send the barcode's content to the scanner's output port.

<span class="mw-page-title-main">EURion constellation</span> Pattern of symbols incorporated into a number of banknote designs

The EURion constellation is a pattern of symbols incorporated into a number of secure documents such as banknotes, checks, and ownership title certificates designs worldwide since about 1996. It is added to help imaging software detect the presence of such a document in a digital image. Such software can then block the user from reproducing banknotes to prevent counterfeiting using colour photocopiers.

<span class="mw-page-title-main">Security printing</span> Field of the printing industry for banknotes and other security products

Security printing is the field of the printing industry that deals with the printing of items such as banknotes, cheques, passports, tamper-evident labels, security tapes, product authentication, stock certificates, postage stamps and identity cards. The main goal of security printing is to prevent forgery, tampering, or counterfeiting. More recently many of the techniques used to protect these high-value documents have become more available to commercial printers, whether they are using the more traditional offset and flexographic presses or the newer digital platforms. Businesses are protecting their lesser-value documents such as transcripts, coupons and prescription pads by incorporating some of the features listed below to ensure that they cannot be forged or that alteration of the data cannot occur undetected.

<span class="mw-page-title-main">QR code</span> Type of matrix barcode

A QR code is a type of two-dimensional matrix barcode, invented in 1994, by Japanese company Denso Wave for labelling automobile parts. A QR code consists of black squares arranged in a square grid on a white background, including some fiducial markers, which can be read by an imaging device, such as a camera, and processed using Reed–Solomon error correction until the image can be appropriately interpreted. The required data are then extracted from patterns that are present in both the horizontal and the vertical components of the QR image.

A digital watermark is a kind of marker covertly embedded in a noise-tolerant signal such as audio, video or image data. It is typically used to identify ownership of the copyright of such signal. "Watermarking" is the process of hiding digital information in a carrier signal; the hidden information should, but does not need to, contain a relation to the carrier signal. Digital watermarks may be used to verify the authenticity or integrity of the carrier signal or to show the identity of its owners. It is prominently used for tracing copyright infringements and for banknote authentication.

<span class="mw-page-title-main">Identity document forgery</span> Fake IDs and their production

Identity document forgery is the process by which identity documents issued by governing bodies are copied and/or modified by persons not authorized to create such documents or engage in such modifications, for the purpose of deceiving those who would view the documents about the identity or status of the bearer. The term also encompasses the activity of acquiring identity documents from legitimate bodies by falsifying the required supporting documentation in order to create the desired identity.

<span class="mw-page-title-main">Hand geometry</span> Biometric identification

Hand geometry is a biometric that identifies users from the shape of their hands. Hand geometry readers measure a user's palm and fingers along many dimensions including length, width, deviation, and angle and compare those measurements to measurements stored in a file.

<span class="mw-page-title-main">Security paper</span>

Security paper is a paper used in security printing that incorporates features that can be used to identify or authenticate a document as original, e.g., watermarks or invisible fibres in paper, or features that demonstrate tamper evidence when fraud is attempted, e.g., to remove or alter print such as amounts or signatures on a cheque. Examples of this kind of papers are used for banknotes and used for identification such as passports and certificates, such as birth certificates and different types of academic and qualification certificates, as well as government documents, e.g., voting ballots and tax strips. This also extends to personal and business checks, stock certificates, certificates issued by financial institutions and sensitive government-issued documents. The main use of security paper is to stop people from counterfeiting.

<span class="mw-page-title-main">Photocopier</span> Device for reproducing documents

A photocopier is a machine that makes copies of documents and other visual images onto paper or plastic film quickly and cheaply. Most modern photocopiers use a technology called xerography, a dry process that uses electrostatic charges on a light-sensitive photoreceptor to first attract and then transfer toner particles onto paper in the form of an image. The toner is then fused onto the paper using heat, pressure, or a combination of both. Copiers can also use other technologies, such as inkjet, but xerography is standard for office copying.

<span class="mw-page-title-main">Brand protection</span>

Brand protection is the process and set of actions that a right holder undertakes to prevent third parties from using its intellectual property without permission, as this may cause loss of revenue and, usually more importantly, destroys brand equity, reputation and trust. Brand protection seeks primarily to ensure that trademarks, patents, and copyrights are respected, though other intellectual property rights such as industrial design rights or trade dress can be involved. Counterfeiting is the umbrella term to designate infringements to intellectual property, with the exception of the term piracy which is sometimes (colloquially) used to refer to copyright infringement.

<span class="mw-page-title-main">Optical braille recognition</span> Automated recognition of braille characters

Optical braille recognition is technology to capture and process images of braille characters into natural language characters. It is used to convert braille documents for people who cannot read them into text, and for preservation and reproduction of the documents.

Copy-evident documents have features that make it detectable that a copy is not the original.

Perceptual hashing is the use of a fingerprinting algorithm that produces a snippet, hash, or fingerprint of various forms of multimedia. A perceptual hash is a type of locality-sensitive hash, which is analogous if features of the multimedia are similar. This is in contrast to cryptographic hashing, which relies on the avalanche effect of a small change in input value creating a drastic change in output value. Perceptual hash functions are widely used in finding cases of online copyright infringement as well as in digital forensics because of the ability to have a correlation between hashes so similar data can be found.

AlfonsoFarinaFREng is an Italian electronic engineer and former industry manager. He is most noted for the development of the track while scan techniques for radars and generally for the development of a wide range of signal processing techniques used for sensors where tracking plays an essential role. He is author of about 1000 publications. His work was aimed to a synergistic cooperation between industry and academy.

<span class="mw-page-title-main">Machine Identification Code</span> Digital watermark which certain printers leave

A Machine Identification Code (MIC), also known as printer steganography, yellow dots, tracking dots or secret dots, is a digital watermark which certain color laser printers and copiers leave on every printed page, allowing identification of the device which was used to print a document and giving clues to the originator. Developed by Xerox and Canon in the mid-1980s, its existence became public only in 2004. In 2018, scientists developed privacy software to anonymize prints in order to support whistleblowers publishing their work.

<span class="mw-page-title-main">Scantrust</span> Swiss information technology company

Scantrust is a Swiss company that provides an Internet of things platform for identifying products on the internet.

<span class="mw-page-title-main">Justin Picard</span> Swiss-Canadian engineer and entrepreneur

Justin Picard is a Swiss-Canadian engineer and entrepreneur who currently serves as the chief technology officer of Scantrust, a company he co-founded in 2013. He is the inventor of the copy detection pattern (CDP), a digital authentication technology for detecting product and document counterfeiting.

References

  1. 1 2 Picard, Justin (2004-06-03). Van Renesse, Rudolf L (ed.). "Digital authentication with copy-detection patterns". Optical Security and Counterfeit Deterrence Techniques V. SPIE. 5310: 176. Bibcode:2004SPIE.5310..176P. doi:10.1117/12.528055. S2CID   58492104.
  2. 1 2 Phan Ho, Anh Thu; Mai Hoang, Bao An; Sawaya, Wadih; Bas, Patrick (2014-06-05). "Document authentication using graphical codes: reliable performance analysis and channel optimization". EURASIP Journal on Information Security. 2014 (1): 9. doi: 10.1186/1687-417X-2014-9 . hdl: 20.500.12210/25915 . ISSN   1687-417X.
  3. Tkachenko, Iuliia; Puech, William; Destruel, Christophe; Strauss, Olivier; Gaudin, Jean-Marc; Guichard, Christian (2016-03-01). "Two-Level QR Code for Private Message Sharing and Document Authentication". IEEE Transactions on Information Forensics and Security. 11 (3): 571–583. doi:10.1109/TIFS.2015.2506546. ISSN   1556-6021. S2CID   9465424.
  4. Technology and Security: Countering Criminal Infiltrations in the Legitimate Supply Chain (PDF). United Nations Interregional Crime and Justice Research Institute. 2021.
  5. Abele, Eberhard. (2011). Schutz vor Produktpiraterie : ein Handbuch für den Maschinen- und Anlagenbau [Protection against product piracy: A handbook for the mechanical and plant engineering industry]. Ksuke, Philipp., Lang, Horst. Berlin: Springer. ISBN   978-3-642-19280-7. OCLC   726826809.
  6. EUIPO Anti-Counterfeiting Technology Guide. European Observatory on Infringements of Intellectual Property Rights. 2021.
  7. "Pagina iniziale dell'Ufficio Italiano Brevetti e Marchi - Copy Detection Patterns – CDP" [Home page of the Italian Patent and Trademark Office -Copy Detection Patterns – CDP]. uibm.mise.gov.it. Archived from the original on 2021-01-29. Retrieved 2021-01-22.
  8. 1 2 Picard, Justin; Vielhauer, Claus; Thorwirth, Niels (2004-06-22). Delp Iii, Edward J; Wong, Ping W (eds.). "Towards fraud-proof ID documents using multiple data hiding technologies and biometrics". Security, Steganography, and Watermarking of Multimedia Contents VI. SPIE. 5306: 416. Bibcode:2004SPIE.5306..416P. doi:10.1117/12.525446. S2CID   15931951.
  9. 1 2 Picard, Justin (2008). "Copy Detectable Images: From Theory to Practice". Conference on Optical Security and Counterfeit Deterrence 2008. 1: 372–381 via Reconnaissance International.
  10. Dirik, Ahmet Emir; Haas, Bertrand (November 2012). "Copy detection pattern-based document protection for variable media". IET Image Processing. 6 (8): 1102–1113. doi:10.1049/iet-ipr.2012.0297. ISSN   1751-9667 . Retrieved 12 August 2020.
  11. 1 2 Vision and challenges for realising the Internet of things. Sundmaeker, Harald., Guillemin, Patrick., Friess, Peter., Woelfflé, Sylvie., European Commission. Directorate-General for the Information Society and Media. Luxembourg: EUR-OP. 2010. ISBN   978-92-79-15088-3. OCLC   847355368.{{cite book}}: CS1 maint: others (link)
  12. Picard, Justin (2008). "On the Security of Copy Detectable Images". NIP & Digital Fabrication Conference, 2008 International Conference on Digital Printing Technologies.
  13. Dirik, A. E.; Haas, B. (2012-11-01). "Copy detection pattern-based document protection for variable media". IET Image Processing. 6 (8): 1102–1113. doi:10.1049/iet-ipr.2012.0297. ISSN   1751-9667.
  14. Baras, Cleo; Cayre, François (2012-08-01). "2D bar-codes for authentication: A security approach". 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO): 1760–1766.
  15. Voloshynovskiy, Slava; Holotyak, Taras; Bas, Patrick (2016-03-01). "Physical object authentication: Detection-theoretic comparison of natural and artificial randomness" (PDF). 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (PDF). IEEE. pp. 2029–2033. doi:10.1109/icassp.2016.7472033. ISBN   978-1-4799-9988-0. S2CID   10331654.
  16. Taran, Olga; Bonev, Slavi; Voloshynovskiy, Slava (2019-03-18). "Clonability of anti-counterfeiting printable graphical codes: a machine learning approach". arXiv: 1903.07359 [cs.CR].
  17. Yadav, Rohit; Tkachenko, Iuliia; Trémeau, Alain; Fournel, Thierry (2019). "Estimation of Copy-sensitive Codes Using a Neural Approach" (PDF). Proceedings of the ACM Workshop on Information Hiding and Multimedia Security. New York, New York, USA: ACM Press. pp. 77–82. doi:10.1145/3335203.3335718. ISBN   978-1-4503-6821-6. S2CID   195848782.
  18. Picard, Justin; Khatri, Nick; 100% Inline Verification of Secure Graphics at High Resolution; 2019-05-15; Digital Document Security; Reconnaissance International
  19. Zhang, Pei; Zhang, Weiming; Yu, Nenghai (April 2019). "Copy Detection Pattern-Based Authentication for Printed Documents with Multi-Dimensional Features". 2019 7th International Conference on Information, Communication and Networks (ICICN). IEEE. pp. 150–157. doi:10.1109/icicn.2019.8834939. ISBN   978-1-7281-0425-6. S2CID   202561547.
  20. Chaves, Leonardo W. F.; Nochta, Zoltán (2010-07-12), "Breakthrough Towards the Internet of Things", Unique Radio Innovation for the 21st Century, Springer Berlin Heidelberg, pp. 25–38, Bibcode:2010urif.book...25C, doi:10.1007/978-3-642-03462-6_2, ISBN   978-3-642-03461-9, S2CID   58916135
  21. Yumpu.com. "FIFA World Cup Case Study - Code Corporation". yumpu.com. Retrieved 2020-04-19.
  22. "Pattern makes 2D barcodes copy-proof". www.securingindustry.com. 2009-07-15. Retrieved 2020-04-19.
  23. Carron. "Combatting counterfeiting using QR codes".
  24. "Digital and Analog Technologies for Product Authentication and Tamper Evidence". Packaging Europe. 2019-03-28. Retrieved 2020-04-23.
  25. "Software Detection of Currency // Dr Steven J. Murdoch". murdoch.is. Retrieved 2020-04-23.
  26. Mahmoud, Khaled W.; Blackledge, Jonathon M.; Datta, Sekharjit; Flint, James A. (2004-06-22). Delp Iii, Edward J.; Wong, Ping W. (eds.). "Print protection using high-frequency fractal noise". Security, Steganography, and Watermarking of Multimedia Contents VI. SPIE. 5306: 446. Bibcode:2004SPIE.5306..446M. doi:10.1117/12.526677. S2CID   46155853.
  27. Zhou, Jifeng; Pang, Mingyong (September 2010). "Digital watermark for printed materials". 2010 2nd IEEE International Conference on Network Infrastructure and Digital Content. IEEE. pp. 758–762. doi:10.1109/icnidc.2010.5657884. ISBN   978-1-4244-6851-5. S2CID   16587568.
  28. Nguyen, Hoai Phuong; Retraint, Florent; Morain-Nicolier, Frédéric; Delahaies, Angès (2019). "A Watermarking Technique to Secure Printed Matrix Barcode—Application for Anti-Counterfeit Packaging". IEEE Access. 7: 131839–131850. Bibcode:2019IEEEA...7m1839N. doi: 10.1109/ACCESS.2019.2937465 . ISSN   2169-3536.
  29. Barni, Mauro; Cox, Ingemar; Kalker, Ton; Kim, Hyoung-Joong, eds. (2005). Digital Watermarking. Lecture Notes in Computer Science. Vol. 3710. doi:10.1007/11551492. ISBN   978-3-540-28768-1. ISSN   0302-9743.