This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
In materials modeled by linear elastic fracture mechanics (LEFM), crack extension occurs when the applied energy release rate exceeds , where is the material's resistance to crack extension.
Conceptually can be thought of as the energetic gain associated with an additional infinitesimal increment of crack extension, while can be thought of as the energetic penalty of an additional infinitesimal increment of crack extension. At any moment in time, if then crack extension is energetically favorable. A complication to this process is that in some materials, is not a constant value during the crack extension process. [1] A plot of crack growth resistance versus crack extension is called a crack growth resistance curve, or R-curve. A plot of energy release rate versus crack extension for a particular loading configuration is called the driving force curve. The nature of the applied driving force curve relative to the material's R-curve determines the stability of a given crack.
The usage of R-curves in fracture analysis is a more complex, but more comprehensive failure criteria compared to the common failure criteria that fracture occurs when where is simply a constant value called the critical energy release rate. An R-curve based failure analysis takes into account the notion that a material's resistance to fracture is not necessarily constant during crack growth.
R-curves can alternatively be discussed in terms of stress intensity factors rather than energy release rates , where the R-curves can be expressed as the fracture toughness (, sometimes referred to as ) as a function of crack length .
The simplest case of a material's crack resistance curve would be materials which exhibit a "flat R-curve" ( is constant with respect to ). In materials with flat R-curves (the shape of R curve depends on the material properties and more importantly on the crack tip plasticity. The reduction in stress intensity factor due to high deformation can result in a flat R curve), as a crack propagates, the resistance to further crack propagation remains constant. Thus, the common failure criteria of is largely valid. In these materials, if increases as a function of (which is the case in many loading configurations and crack geometries), then as soon as the applied exceeds the crack will unstably grow to failure without ever halting.
Physically, the independence of from is indicative that in these materials the phenomena which are energetically costly during crack propagation do not evolve during crack propagation. This tends to be an accurate model for perfectly brittle materials such as ceramics, in which the principal energetic cost of fracture is the development of new free surfaces on the crack faces. [2] The character of the energetic cost of the creation of new surfaces remains largely unchanged regardless of how long the crack has propagated from its initial length.
Another category of R-curve that is common in real materials is a "rising R-curve" ( increases as increases). In materials with rising R-curves, as a crack propagates, the resistance to further crack propagation increases, and it requires a higher and higher applied in order to achieve each subsequent increment of crack extension . As such, it can be technically challenging in these materials in practice to define a single value to quantify resistance to fracture (i.e. or ) as the resistance to fracture rises continuously as any given crack propagates.
Materials with rising R-curves can also more easily exhibit stable crack growth than materials with flat R-curves, even if strictly increases as a function of . If at some moment in time a crack exists with initial length and an applied energy release rate which is infinitesimally exceeding the R-curve at this crack length then this material would immediately fail if it exhibited flat R-curve behavior. If instead it exhibits rising R-curve behavior, then the crack has an added criteria for crack growth that the instantaneous slope of the driving force curve must be greater than the instantaneous slope of the crack resistance curve or else it is energetically unfavorable to grow the crack further. If is infinitesimally greater than but then the crack will grow by an infinitesimally small increment such that and then crack growth will arrest. If the applied crack driving force was gradually increased over time (through increasing the applied force for example) then this would lead to stable crack growth in this material as long as the instantaneous slope of the driving force curve continued to be less than the slope of the crack resistance curve.
Physically, the dependence of on is indicative that in rising R-curve materials, the phenomena which are energetically costly during crack propagation are evolving as the crack grows in such a way that leads to accelerated energy dissipation during crack growth. This tends to be the case in materials which undergo ductile fracture as it can be observed that the plastic zone at the crack tip increases in size as the crack propagates, indicating that an increasing amount of energy must be dissipated to plastic deformation for the crack to continue to grow. [3] A rising R-curve can also sometimes be observed in situations where a material's fracture surface becomes significantly rougher as the crack propagates, leading to additional energy dissipation as additional area of free surfaces is generated. [4]
In theory, does not continue to increase to infinity as , and instead will asymptotically approach some steady-state value after a finite amount of crack growth. It is usually not feasible to reach this steady-state condition, as it often requires very long crack extensions before reaching this condition, and thus would require large testing specimen geometries (and thus high applied forces) to observe. As such, most materials with rising R-curves are treated as if continually rises until failure.
While far less common, some materials can exhibit falling R-curves ( decreases as increases). In some cases, the material may initially exhibit rising R-curve behavior, reach a steady-state condition, and then transition into falling R-curve behavior. In a falling R-curve regime, as a crack propagates, the resistance to further crack propagation drops, and it requires less and less applied in order to achieve each subsequent increment of crack extension . Materials experiencing these conditions would exhibit highly unstable crack growth as soon as any initial crack began to propagate.
Polycrystalline graphite has been reported to demonstrate falling R-curve behavior after initially exhibiting rising R-curve behavior, which is postulated to be due to the gradual development of a microcracking damage zone in front of the crack tip which eventually dominates after the phenomena leading to the initial rising R-curve behavior reach steady-state. [5]
Size and geometry also plays a role in determining the shape of the R curve. A crack in a thin sheet tends to produce a steeper R curve than a crack in a thick plate because there is a low degree of stress triaxiality at the crack tip in the thin sheet while the material near the tip of the crack in the thick plate may be in plane strain. The R curve can also change at free boundaries in the structure. Thus, a wide plate may exhibit a somewhat different crack growth resistance behavior than a narrow plate of the same material. Ideally, the R curve, as well as other measures of fracture toughness, is a property only of the material and does not depend on the size or shape of the cracked body. Much of fracture mechanics is predicated on the assumption that fracture toughness is a material property.
ASTM evolved a standard practice for determining R-curves to accommodate the widespread need for this type of data. While the materials to which this standard practice can be applied are not restricted by strength, thickness or toughness, the test specimens must be of sufficient size to remain predominantly elastic throughout the test. The size requirement is to ensure the validity of the linear elastic fracture mechanics calculations. Specimens of standard proportions are required, but size is variable, adjusted for yield strength and toughness of the material considered.
ASTM Standard E561 covers the determination of R-curves using a middle cracked tension panel [M(T)], compact tension [C(T)], and crack-line-wedge-loaded [C(W)] specimens. While the C(W) specimen had gained substantial popularity for collecting KR curve data, many organizations still conduct wide panel, center cracked tension tests to obtain fracture toughness data. As with the plane-strain fracture toughness standard, ASTM E399, the planar dimensions of the specimens are sized to ensure that nominal elastic conditions are met. For the M(T) specimen, the width (W) and half crack size (a) must be chosen so that the remaining ligament is below net section yielding at failure.
In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined. These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength.
Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.
In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.
Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form and eventually lead to structural failure.
Delamination is a mode of failure where a material fractures into layers. A variety of materials including laminate composites and concrete can fail by delamination. Processing can create layers in materials such as steel formed by rolling and plastics and metals from 3D printing which can fail from layer separation. Also, surface coatings such as paints and films can delaminate from the coated substrate.
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.
Corrosion fatigue is fatigue in a corrosive environment. It is the mechanical degradation of a material under the joint action of corrosion and cyclic loading. Nearly all engineering structures experience some form of alternating stress, and are exposed to harmful environments during their service life. The environment plays a significant role in the fatigue of high-strength structural materials like steel, aluminum alloys and titanium alloys. Materials with high specific strength are being developed to meet the requirements of advancing technology. However, their usefulness depends to a large extent on the degree to which they resist corrosion fatigue.
The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 by James R. Rice, who showed that an energetic contour path integral was independent of the path around a crack.
Paris' law is a crack growth equation that gives the rate of growth of a fatigue crack. The stress intensity factor characterises the load around a crack tip and the rate of crack growth is experimentally shown to be a function of the range of stress intensity seen in a loading cycle. The Paris equation is
Peridynamics is a non-local formulation of continuum mechanics that is oriented toward deformations with discontinuities, especially fractures. Originally, bond-based peridynamic has been introduced, wherein, internal interactions forces between a material point and all the other ones with which it can interact, are modeled as a central forces field. This type of forces field can be imagined as a mesh of bonds connecting each point of the body with every other interacting points within a certain distance which depends on material property, called peridynamic horizon. Later, to overcome bond-based framework limitations for the material Poisson’s ratio, state-base peridynamics, has been formulated. Its characteristic feature is that the force exchanged between a point and another one is influenced by the deformation state of all other bonds relative to its interaction zone.
In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, and is thus expressed in terms of energy per unit area. Various energy balances can be constructed relating the energy released during fracture to the energy of the resulting new surface, as well as other dissipative processes such as plasticity and heat generation. The energy release rate is central to the field of fracture mechanics when solving problems and estimating material properties related to fracture and fatigue.
Polymer fracture is the study of the fracture surface of an already failed material to determine the method of crack formation and extension in polymers both fiber reinforced and otherwise. Failure in polymer components can occur at relatively low stress levels, far below the tensile strength because of four major reasons: long term stress or creep rupture, cyclic stresses or fatigue, the presence of structural flaws and stress-cracking agents. Formations of submicroscopic cracks in polymers under load have been studied by x ray scattering techniques and the main regularities of crack formation under different loading conditions have been analyzed. The low strength of polymers compared to theoretically predicted values are mainly due to the many microscopic imperfections found in the material. These defects namely dislocations, crystalline boundaries, amorphous interlayers and block structure can all lead to the non-uniform distribution of mechanical stress.
The cohesive zone model (CZM) is a model in fracture mechanics where fracture formation is regarded as a gradual phenomenon and separation of the crack surfaces takes place across an extended crack tip, or cohesive zone, and is resisted by cohesive tractions. The origin of this model can be traced back to the early sixties by Dugdale (1960) and Barenblatt (1962) to represent nonlinear processes located at the front of a pre-existent crack.
Crack closure is a phenomenon in fatigue loading, where the opposing faces of a crack remain in contact even with an external load acting on the material. As the load is increased, a critical value will be reached at which time the crack becomes open. Crack closure occurs from the presence of material propping open the crack faces and can arise from many sources including plastic deformation or phase transformation during crack propagation, corrosion of crack surfaces, presence of fluids in the crack, or roughness at cracked surfaces.
Crack tip opening displacement (CTOD) or is the distance between the opposite faces of a crack tip at the 90° intercept position. The position behind the crack tip at which the distance is measured is arbitrary but commonly used is the point where two 45° lines, starting at the crack tip, intersect the crack faces. The parameter is used in fracture mechanics to characterize the loading on a crack and can be related to other crack tip loading parameters such as the stress intensity factor and the elastic-plastic J-integral.
In materials science, toughening refers to the process of making a material more resistant to the propagation of cracks. When a crack propagates, the associated irreversible work in different materials classes is different. Thus, the most effective toughening mechanisms differ among different materials classes. The crack tip plasticity is important in toughening of metals and long-chain polymers. Ceramics have limited crack tip plasticity and primarily rely on different toughening mechanisms.
Fracture of biological materials may occur in biological tissues making up the musculoskeletal system, commonly called orthopedic tissues: bone, cartilage, ligaments, and tendons. Bone and cartilage, as load-bearing biological materials, are of interest to both a medical and academic setting for their propensity to fracture. For example, a large health concern is in preventing bone fractures in an aging population, especially since fracture risk increases ten fold with aging. Cartilage damage and fracture can contribute to osteoarthritis, a joint disease that results in joint stiffness and reduced range of motion.
A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of fatigue cracks can result in catastrophic failure, particularly in the case of aircraft. A crack growth equation can be used to ensure safety, both in the design phase and during operation, by predicting the size of cracks. In critical structure, loads can be recorded and used to predict the size of cracks to ensure maintenance or retirement occurs prior to any of the cracks failing.
The Faber-Evans model for crack deflection, is a fracture mechanics-based approach to predict the increase in toughness in two-phase ceramic materials due to crack deflection. The effect is named after Katherine Faber and her mentor, Anthony G. Evans, who introduced the model in 1983. The Faber-Evans model is a principal strategy for tempering brittleness and creating effective ductility.