A cryptographic module is a component of a computer system that securely implements cryptographic algorithms, typically with some element of tamper resistance.
NIST defines a cryptographic module as "The set of hardware, software, and/or firmware that implements security functions (including cryptographic algorithms), holds plaintext keys and uses them for performing cryptographic operations, and is contained within a cryptographic module boundary." [1]
Hardware security modules, including secure cryptoprocessors, are one way of implementing cryptographic modules.
Standards for cryptographic modules include FIPS 140-3 and ISO/IEC 19790. [2] [3]
The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.
The Federal Information Processing Standards (FIPS) of the United States are a set of publicly announced standards that the National Institute of Standards and Technology (NIST) has developed for use in computer systems of non-military United States government agencies and contractors. FIPS standards establish requirements for ensuring computer security and interoperability, and are intended for cases in which suitable industry standards do not already exist. Many FIPS specifications are modified versions of standards the technical communities use, such as the American National Standards Institute (ANSI), the Institute of Electrical and Electronics Engineers (IEEE), and the International Organization for Standardization (ISO).
In cryptography, Triple DES, officially the Triple Data Encryption Algorithm, is a symmetric-key block cipher, which applies the DES cipher algorithm three times to each data block. The Data Encryption Standard's (DES) 56-bit key is no longer considered adequate in the face of modern cryptanalytic techniques and supercomputing power. A CVE released in 2016, CVE-2016-2183 disclosed a major security vulnerability in DES and 3DES encryption algorithms. This CVE, combined with the inadequate key size of DES and 3DES, led to NIST deprecating DES and 3DES for new applications in 2017, and for all applications by the end of 2023. It has been replaced with the more secure, more robust AES.
The Common Criteria for Information Technology Security Evaluation is an international standard for computer security certification. It is currently in version 3.1 revision 5.
In cryptography, a message authentication code (MAC), sometimes known as an authentication tag, is a short piece of information used for authenticating and integrity-checking a message. In other words, to confirm that the message came from the stated sender and has not been changed. The MAC value allows verifiers to detect any changes to the message content.
The Federal Information Processing Standard Publication 140-2,, is a U.S. government computer security standard used to approve cryptographic modules. The title is Security Requirements for Cryptographic Modules. Initial publication was on May 25, 2001, and was last updated December 3, 2002.
The Cryptographic Module Validation Program (CMVP) is a joint American and Canadian security accreditation program for cryptographic modules. The program is available to any vendors who seek to have their products certified for use by the U.S. Government and regulated industries that collect, store, transfer, share and disseminate "sensitive, but not classified" information. All of the tests under the CMVP are handled by third-party laboratories that are accredited as Cryptographic Module Testing Laboratories by the National Voluntary Laboratory Accreditation Program (NVLAP). Product certifications under the CMVP are performed in accordance with the requirements of FIPS 140-2 and FIPS 140-3.
The 140 series of Federal Information Processing Standards (FIPS) are U.S. government computer security standards that specify requirements for cryptographic modules.
Information security standards or cyber security standards are techniques generally outlined in published materials that attempt to protect the cyber environment of a user or organization. This environment includes users themselves, networks, devices, all software, processes, information in storage or transit, applications, services, and systems that can be connected directly or indirectly to networks.
A hardware security module (HSM) is a physical computing device that safeguards and manages secrets, performs encryption and decryption functions for digital signatures, strong authentication and other cryptographic functions. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server. A hardware security module contains one or more secure cryptoprocessor chips.
Network Security Services (NSS) is a collection of cryptographic computer libraries designed to support cross-platform development of security-enabled client and server applications with optional support for hardware TLS/SSL acceleration on the server side and hardware smart cards on the client side. NSS provides a complete open-source implementation of cryptographic libraries supporting Transport Layer Security (TLS) / Secure Sockets Layer (SSL) and S/MIME. NSS releases prior to version 3.14 are tri-licensed under the Mozilla Public License 1.1, the GNU General Public License, and the GNU Lesser General Public License. Since release 3.14, NSS releases are licensed under GPL-compatible Mozilla Public License 2.0.
Cryptographic Module Testing Laboratory (CMTL) is an information technology (IT) computer security testing laboratory that is accredited to conduct cryptographic module evaluations for conformance to the FIPS 140-2 U.S. Government standard.
The Federal Information Processing Standard Publication 140-3 is a U.S. government computer security standard used to approve cryptographic modules. The title is Security Requirements for Cryptographic Modules. Initial publication was on March 22, 2019 and it supersedes FIPS 140-2.
The tables below compare cryptography libraries that deal with cryptography algorithms and have API function calls to each of the supported features.
Storage security is a specialty area of security that is concerned with securing data storage systems and ecosystems and the data that resides on these systems.
The IBM 4765 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high-security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed.
The IBM 4767 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high-security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed. Sensitive key material is never exposed outside the physical secure boundary in a clear format.
The IBM 4768 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed. Sensitive key material is never exposed outside the physical secure boundary in a clear format.
The IBM 4769 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high-security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed. Sensitive key material is never exposed outside the physical secure boundary in a clear format.
ISO/IEC 19790 is an ISO/IEC standard for security requirements for cryptographic modules. It addresses a wide range of issues regarding their implementation, including specifications, interface definitions, authentication, operational and physical security, configuration management, testing, and life-cycle management. The first version of ISO/IEC 19790 was derived from the U.S. government computer security standard FIPS 140-2, Security Requirements for Cryptographic Modules.