Cubicity

Last updated
A cubicity 2 graph realized as the intersection graph of unit cubes, i.e. squares, in the plane. A graph with cubicity 2.svg
A cubicity 2 graph realized as the intersection graph of unit cubes, i.e. squares, in the plane.

In graph theory, cubicity is a graph invariant defined to be the smallest dimension such that a graph can be realized as an intersection graph of unit cubes in Euclidean space. Cubicity was introduced by Fred S. Roberts in 1969 along with a related invariant called boxicity that considers the smallest dimension needed to represent a graph as an intersection graph of axis-parallel rectangles in Euclidean space. [1]

Definition

Let be a graph. Then the cubicity of , denoted by , is the smallest integer such that can be realized as an intersection graph of axis-parallel unit cubes in -dimensional Euclidean space. [2]

The cubicity of a graph is closely related to the boxicity of a graph, denoted . The definition of boxicity is essentially the same as cubicity, except in terms of using axis-parallel rectangles instead of cubes. Since a cube is a special case of a rectangle, the cubicity of a graph is always an upper bound for the boxicity of a graph. In the other direction, it can be shown that for any graph on vertices, the inequality , where is the ceiling function, i.e., the smallest integer greater than or equal to . [3]

Related Research Articles

<span class="mw-page-title-main">Convex set</span> In geometry, set whose intersection with every line is a single line segment

In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment . For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

<span class="mw-page-title-main">Histogram</span> Graphical representation of the distribution of numerical data

A histogram is an approximate representation of the distribution of numerical data. The term was first introduced by Karl Pearson. To construct a histogram, the first step is to "bin" the range of values— divide the entire range of values into a series of intervals—and then count how many values fall into each interval. The bins are usually specified as consecutive, non-overlapping intervals of a variable. The bins (intervals) must be adjacent and are often of equal size.

<span class="mw-page-title-main">Symmetry group</span> Group of transformations under which the object is invariant

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).

<span class="mw-page-title-main">Floor and ceiling functions</span> Nearest integers from a number

In mathematics and computer science, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the smallest integer greater than or equal to x, denoted x or ceil(x).

<span class="mw-page-title-main">Packing problems</span> Problems which attempt to find the most efficient way to pack objects into containers

Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap.

In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other.

In combinatorics, a Helly family of order k is a family of sets in which every minimal subfamily with an empty intersection has k or fewer sets in it. Equivalently, every finite subfamily such that every k-fold intersection is non-empty has non-empty total intersection. The k-Helly property is the property of being a Helly family of order k.

<span class="mw-page-title-main">Edge coloring</span> Problem of coloring a graphs edges such that meeting edges do not match

In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

In mathematics, the isoperimetric dimension of a manifold is a notion of dimension that tries to capture how the large-scale behavior of the manifold resembles that of a Euclidean space.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

<span class="mw-page-title-main">Domino tiling</span> Geometric construct

In geometry, a domino tiling of a region in the Euclidean plane is a tessellation of the region by dominoes, shapes formed by the union of two unit squares meeting edge-to-edge. Equivalently, it is a perfect matching in the grid graph formed by placing a vertex at the center of each square of the region and connecting two vertices when they correspond to adjacent squares.

<span class="mw-page-title-main">Boxicity</span> Smallest dimension where a graph can be represented as an intersection graph of boxes

In graph theory, boxicity is a graph invariant, introduced by Fred S. Roberts in 1969.

Discrepancy of hypergraphs is an area of discrepancy theory.

In geometry, the moment curve is an algebraic curve in d-dimensional Euclidean space given by the set of points with Cartesian coordinates of the form

In graph theory, a partial cube is a graph that is isometric to a subgraph of a hypercube. In other words, a partial cube can be identified with a subgraph of a hypercube in such a way that the distance between any two vertices in the partial cube is the same as the distance between those vertices in the hypercube. Equivalently, a partial cube is a graph whose vertices can be labeled with bit strings of equal length in such a way that the distance between two vertices in the graph is equal to the Hamming distance between their labels. Such a labeling is called a Hamming labeling; it represents an isometric embedding of the partial cube into a hypercube.

A geometric separator is a line that partitions a collection of geometric shapes into two subsets, such that proportion of shapes in each subset is bounded, and the number of shapes that do not belong to any subset is small.

In graph theory, the thickness of a graph G is the minimum number of planar graphs into which the edges of G can be partitioned. That is, if there exists a collection of k planar graphs, all having the same set of vertices, such that the union of these planar graphs is G, then the thickness of G is at most k. In other words, the thickness of a graph is the minimum number of planar subgraphs whose union equals to graph G.

Babai's problem is a problem in algebraic graph theory first proposed in 1979 by László Babai.

<span class="mw-page-title-main">Sphericity (graph theory)</span>

In graph theory, the sphericity of a graph is a graph invariant defined to be the smallest dimension of Euclidean space required to realize the graph as an intersection graph of unit spheres. The sphericity of a graph is a generalization of the boxicity and cubicity invariants defined by F.S. Roberts in the late 1960s. The concept of sphericity was first introduced by Hiroshi Maehara in the early 1980s.

In graph theory, a class of graphs is said to have few cliques if every member of the class has a polynomial number of maximal cliques. Certain generally NP-hard computational problems are solvable in polynomial time on such classes of graphs, making graphs with few cliques of interest in computational graph theory, network analysis, and other branches of applied mathematics. Informally, a family of graphs has few cliques if the graphs do not have a large number of large clusters.

References

  1. Roberts, F. S. (1969). On the boxicity and cubicity of a graph. In W. T. Tutte (Ed.), Recent Progress in Combinatorics (pp. 301–310). San Diego, CA: Academic Press. ISBN 978-0-12-705150-5
  2. Fishburn, Peter C (1983-12-01). "On the sphericity and cubicity of graphs". Journal of Combinatorial Theory, Series B. 35 (3): 309–318. doi:10.1016/0095-8956(83)90057-6. ISSN   0095-8956.
  3. Sunil Chandran, L.; Ashik Mathew, K. (2009-04-28). "An upper bound for Cubicity in terms of Boxicity". Discrete Mathematics. 309 (8): 2571–2574. arXiv: math/0605486 . doi:10.1016/j.disc.2008.04.011. ISSN   0012-365X. S2CID   7837544.