Cyberbiosecurity

Last updated

Cyberbiosecurity is an emerging field at the intersection of cybersecurity and biosecurity. [1] [2] [3] The objective of cyberbiosecurity has been described as addressing "the potential for or actual malicious destruction, misuse, or exploitation of valuable information, processes, and material at the interface of the life sciences and digital worlds". [2] Cyberbiosecurity is part of a system of measures that collectively aim to "Safeguard the Bioeconomy", an objective described by the National Academies of Sciences, Engineering and Medicine of the United States. [4] [5]

Contents

Cyberbiosecurity threats

Cyberbiosecurity threats are becoming increasingly important as technological progress continues to accelerate in fields such as artificial intelligence, automation, and synthetic biology. [2] [6] Moreover, not only is the pace of progress in these fields accelerating, but they are also becoming increasingly integrated, leading to a growing overlap that is generating new security vulnerabilities. [4] [7] [8] Many of the potential risks from future progress in bioengineering that were identified by researchers fall within the bounds of cyberbiosecurity, for instance, the use of cyberattacks to exploit bio-automation for malicious purposes. [9] Against this background, cyberbiosecurity measures are becoming increasingly important to prevent or protect against the misuse of innovations in the life sciences, including to reduce the proliferation risk of biological weapons. In recent years, there has been a growing amount of research characterizing cyberbiosecurity threats, including by conducting surveys on cyberbiosecurity risk perceptions in the biotech sector, [10] and offering first recommendations for measures to prevent or protect against these threats. [11] [12] [13] [14] Researchers have observed that in the future it may be critical to consider the risk of computer systems being exploited by adversarially created DNA. [15] [16]

In light of the COVID-19 pandemic, some research has focused on the cyberbiosecurity implications of the pandemic. [17]

Cyberbiosecurity in Water and Agriculture Systems

Intelligent Water Systems are a critical component of modern infrastructure, underpinning municipal water treatment, distribution, and irrigation through SCADA networks, advanced metering infrastructure, cloud-connected sensor arrays, and automated control platforms. [18] [19] [20] [21] Agriculture itself is effected as an activity dependent on water security, while having unique cyberbiosecurity risks independent of water. [22] [23] [24] Malicious actors have attacked these, as well as other critical infrastructure systems as they've grown to rely on advanced technologies. [21] [25] [26] Countermeasures have focused on developing anomaly detection techniques in order to prevent damages that could affect end-users. [20] [27]

References

  1. Peccoud, Jean; Gallegos, Jenna E.; Murch, Randall; Buchholz, Wallace G.; Raman, Sanjay (2018). "Cyberbiosecurity: From Naive Trust to Risk Awareness". Trends in Biotechnology. 36 (1): 4–7. doi:10.1016/j.tibtech.2017.10.012. ISSN   1879-3096. PMID   29224719.
  2. 1 2 3 Richardson, Lauren C.; Connell, Nancy D.; Lewis, Stephen M.; Pauwels, Eleonore; Murch, Randy S. (2019-06-06). "Cyberbiosecurity: A Call for Cooperation in a New Threat Landscape". Frontiers in Bioengineering and Biotechnology. 7 99. doi: 10.3389/fbioe.2019.00099 . ISSN   2296-4185. PMC   6562220 . PMID   31245363.
  3. "Mapping the Cyberbiosecurity Enterprise | Frontiers Research Topic". www.frontiersin.org. Retrieved 2020-11-12.
  4. 1 2 Murch, Randall S.; So, William K.; Buchholz, Wallace G.; Raman, Sanjay; Peccoud, Jean (2018-04-05). "Cyberbiosecurity: An Emerging New Discipline to Help Safeguard the Bioeconomy". Frontiers in Bioengineering and Biotechnology. 6 39. doi: 10.3389/fbioe.2018.00039 . ISSN   2296-4185. PMC   5895716 . PMID   29675411.
  5. Safeguarding the Bioeconomy. National Academies of Sciences, Engineering, and Medicine. 2020-01-14. Bibcode:2020nap..book25525N. doi:10.17226/25525. ISBN   978-0-309-49567-7. PMID   32352690. S2CID   214395865.
  6. George, Asha M. (2019). "The National Security Implications of Cyberbiosecurity". Frontiers in Bioengineering and Biotechnology. 7 51. doi: 10.3389/fbioe.2019.00051 . ISSN   2296-4185. PMC   6438857 . PMID   30968020.
  7. Schabacker, Daniel S.; Levy, Leslie-Anne; Evans, Nate J.; Fowler, Jennifer M.; Dickey, Ellen A. (2019). "Assessing Cyberbiosecurity Vulnerabilities and Infrastructure Resilience". Frontiers in Bioengineering and Biotechnology. 7 61. doi: 10.3389/fbioe.2019.00061 . ISSN   2296-4185. PMC   6455068 . PMID   31001526.
  8. Batarseh, Feras A. (2024-10-22). "Cyberbiosecurity: A Multidisciplinary National Security Challenge". Journal of the ASABE. 67 (6): 1607–1608. doi:10.13031/ja.16222.{{cite journal}}: CS1 maint: year (link)
  9. Wintle, Bonnie C; Boehm, Christian R; Rhodes, Catherine; Molloy, Jennifer C; Millett, Piers; Adam, Laura; Breitling, Rainer; Carlson, Rob; Casagrande, Rocco; Dando, Malcolm; Doubleday, Robert (2017). "A transatlantic perspective on 20 emerging issues in biological engineering". eLife. 6 e30247. doi: 10.7554/eLife.30247 . ISSN   2050-084X. PMC   5685469 . PMID   29132504.
  10. Millett, Kathryn; Dos Santos, Eduardo; Millett, Piers D. (2019). "Cyber-Biosecurity Risk Perceptions in the Biotech Sector". Frontiers in Bioengineering and Biotechnology. 7 136. doi: 10.3389/fbioe.2019.00136 . ISSN   2296-4185. PMC   6593240 . PMID   31275929.
  11. Reed, J. Craig; Dunaway, Nicolas (2019). "Cyberbiosecurity Implications for the Laboratory of the Future". Frontiers in Bioengineering and Biotechnology. 7 182. doi: 10.3389/fbioe.2019.00182 . ISSN   2296-4185. PMC   6712584 . PMID   31497596.
  12. Mantle, Jennifer L.; Rammohan, Jayan; Romantseva, Eugenia F.; Welch, Joel T.; Kauffman, Leah R.; McCarthy, Jim; Schiel, John; Baker, Jeffrey C.; Strychalski, Elizabeth A.; Rogers, Kelley C.; Lee, Kelvin H. (2019). "Cyberbiosecurity for Biopharmaceutical Products". Frontiers in Bioengineering and Biotechnology. 7 116. doi: 10.3389/fbioe.2019.00116 . ISSN   2296-4185. PMC   6554447 . PMID   31214582.
  13. Richardson, Lauren C.; Lewis, Stephen M.; Burnette, Ryan N. (2019). "Building Capacity for Cyberbiosecurity Training". Frontiers in Bioengineering and Biotechnology. 7 112. doi: 10.3389/fbioe.2019.00112 . ISSN   2296-4185. PMC   6606988 . PMID   31297367.
  14. Walsh, Patrick et al. (2021). Threats, Risks and Vulnerabilities At the Intersection of Digital, Bio and Health.
  15. Greenberg, Andy. "Biohackers Encoded Malware in a Strand of DNA". Wired.
  16. Computer Security, Privacy, and DNA Sequencing: Compromising Computers with Synthesized DNA, Privacy Leaks, and More. USENIX Association. 2017. pp. 765–779. ISBN   978-1-931971-40-9.
  17. Mueller, Siguna (2020-09-25). "Facing the 2020 Pandemic: What does Cyberbiosecurity want us to know to safeguard the future?". Biosafety and Health. 3 (1): 11–21. doi:10.1016/j.bsheal.2020.09.007. ISSN   2590-0536. PMC   7518802 . PMID   33015604.
  18. Batarseh, Feras A.; Kulkarni, Ajay (March 2023). "AI for Water". Computer. 56 (3): 109–113. Bibcode:2023Compr..56c.109B. doi:10.1109/MC.2022.3231142. ISSN   1558-0814.
  19. Sobien, Daniel; Kulkarni, Ajay; Batarseh, Feras A. (2025-02-01). "Toward Identifying Cyber Dependencies in Water Distribution Systems Using Causal AI". Journal of Water Resources Planning and Management. 151 (2): 04024069. doi:10.1061/JWRMD5.WRENG-6488.
  20. 1 2 Kulkarni, Ajay; Yardimci, Mehmet; Kabir Sikder, Md Nazmul; Batarseh, Feras A. (2023-09-01). "P2O: AI-Driven Framework for Managing and Securing Wastewater Treatment Plants". Journal of Environmental Engineering. 149 (9): 04023045. doi:10.1061/JOEEDU.EEENG-7266.
  21. 1 2 Hassanzadeh, Amin; Rasekh, Amin; Galelli, Stefano; Aghashahi, Mohsen; Taormina, Riccardo; Ostfeld, Avi; Banks, M. Katherine (2020-05-01). "A Review of Cybersecurity Incidents in the Water Sector". Journal of Environmental Engineering. 146 (5): 03120003. doi:10.1061/(ASCE)EE.1943-7870.0001686. ISSN   1943-7870.
  22. Drape, Tiffany; Magerkorth, Noah; Sen, Anuradha; Simpson, Joseph; Seibel, Megan; Murch, Randall Steven; Duncan, Susan E. (2021-08-19). "Assessing the Role of Cyberbiosecurity in Agriculture: A Case Study". Frontiers in Bioengineering and Biotechnology. 9 737927. doi: 10.3389/fbioe.2021.737927 . ISSN   2296-4185. PMID   34490231.
  23. "Ransomware attack paralyzes milking robots — cow dead". CSO Online. Retrieved 2025-10-07.
  24. Maraveas, Chrysanthos; Rajarajan, Muttukrishnan; Arvanitis, Konstantinos G; Vatsanidou, Anna (2024-12-01). "Cybersecurity threats and mitigation measures in agriculture 4.0 and 5.0". Smart Agricultural Technology. 9 100616. doi:10.1016/j.atech.2024.100616. ISSN   2772-3755.
  25. "ODNI Graphic – Recent Cyber Attacks on U.S. Infrastructure Underscore Vulnerability of Critical Systems | WaterISAC". www.waterisac.org. Retrieved 2025-10-07.
  26. "Where could cyberattacks occur in a precision agriculture system? An outlook on the system breakup". extension.sdstate.edu. Retrieved 2025-10-07.
  27. Catalano, C.; Paiano, L.; Calabrese, F.; Cataldo, M.; Mancarella, L.; Tommasi, F. (2022-12-01). "Anomaly detection in smart agriculture systems". Computers in Industry. 143 103750. doi:10.1016/j.compind.2022.103750. ISSN   0166-3615.