Cyclocycloid

Last updated
The cyclocycloid (in this case an epicycloid) with R = 3, r = 1 and d = 1/2 EpitrochoidIn3.gif
The cyclocycloid (in this case an epicycloid) with R = 3, r = 1 and d = 1/2

A cyclocycloid is a roulette traced by a point attached to a circle of radius r rolling around, a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.

The red curve is a cyclocycloid (in this case an hypocycloid) drawn as the smaller black circle rolls around inside the larger blue circle (parameters are R = 5, r = -3, d = 5). HypotrochoidOutThreeFifths.gif
The red curve is a cyclocycloid (in this case an hypocycloid) drawn as the smaller black circle rolls around inside the larger blue circle (parameters are R = 5, r = -3, d = 5).

The parametric equations for a cyclocycloid are

where is a parameter (not the polar angle). And r can be positive (represented by a ball rolling outside of a circle) or negative (represented by a ball rolling inside of a circle) depending on whether it is of an epicycloid or hypocycloid variety.

The classic Spirograph toy traces out these curves.

See also

Related Research Articles

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Euler's formula</span> Complex exponential in terms of sine and cosine

Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x. The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic re the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates.

<i>n</i>-sphere Generalized sphere of dimension n (mathematics)

In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The -sphere is the setting for -dimensional spherical geometry.

<span class="mw-page-title-main">Cycloid</span> Curve traced by a point on a rolling circle

In geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve.

<span class="mw-page-title-main">Parametric equation</span> Representation of a curve by a function of a parameter

In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called a parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization of the object.

<span class="mw-page-title-main">Hypocycloid</span> Curve traced by a point on a circle rolling within another circle

In geometry, a hypocycloid is a special plane curve generated by the trace of a fixed point on a small circle that rolls within a larger circle. As the radius of the larger circle is increased, the hypocycloid becomes more like the cycloid created by rolling a circle on a line.

<span class="mw-page-title-main">Limaçon</span> Type of roulette curve

In geometry, a limaçon or limacon, also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius. It can also be defined as the roulette formed when a circle rolls around a circle with half its radius so that the smaller circle is inside the larger circle. Thus, they belong to the family of curves called centered trochoids; more specifically, they are epitrochoids. The cardioid is the special case in which the point generating the roulette lies on the rolling circle; the resulting curve has a cusp.

<span class="mw-page-title-main">Cardioid</span> Type of plane curve

In geometry, a cardioid is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion. A cardioid can also be defined as the set of points of reflections of a fixed point on a circle through all tangents to the circle.

<span class="mw-page-title-main">Epicycloid</span> Plane curve traced by a point on a circle rolled around another circle

In geometry, an epicycloid is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle. It is a particular kind of roulette.

<span class="mw-page-title-main">Astroid</span> Curve generated by rolling a circle inside another circle with 4x or (4/3)x the radius

In mathematics, an astroid is a particular type of roulette curve: a hypocycloid with four cusps. Specifically, it is the locus of a point on a circle as it rolls inside a fixed circle with four times the radius. By double generation, it is also the locus of a point on a circle as it rolls inside a fixed circle with 4/3 times the radius. It can also be defined as the envelope of a line segment of fixed length that moves while keeping an end point on each of the axes. It is therefore the envelope of the moving bar in the Trammel of Archimedes.

<span class="mw-page-title-main">Deltoid curve</span> Roulette curve made from circles with radii that differ by factors of 3 or 1.5

In geometry, a deltoid curve, also known as a tricuspoid curve or Steiner curve, is a hypocycloid of three cusps. In other words, it is the roulette created by a point on the circumference of a circle as it rolls without slipping along the inside of a circle with three or one-and-a-half times its radius. It is named after the capital Greek letter delta (Δ) which it resembles.

<span class="mw-page-title-main">Nephroid</span> Plane curve; an epicycloid with radii differing by 1/2

In geometry, a nephroid is a specific plane curve. It is a type of epicycloid in which the smaller circle's radius differs from the larger one by a factor of one-half.

<span class="mw-page-title-main">Pedal curve</span> Curve generated by the projections of a fixed point on the tangents of another curve

In mathematics, a pedal curve of a given curve results from the orthogonal projection of a fixed point on the tangent lines of this curve. More precisely, for a plane curve C and a given fixed pedal pointP, the pedal curve of C is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing through the point X. Conversely, at any point R on the curve C, let T be the tangent line at that point R; then there is a unique point X on the tangent T which forms with the pedal point P a line perpendicular to the tangent T – the pedal curve is the set of such points X, called the foot of the perpendicular to the tangent T from the fixed point P, as the variable point R ranges over the curve C.

<span class="mw-page-title-main">Spirograph</span> Geometric drawing device

Spirograph is a geometric drawing device that produces mathematical roulette curves of the variety technically known as hypotrochoids and epitrochoids. The well-known toy version was developed by British engineer Denys Fisher and first sold in 1965.

<span class="mw-page-title-main">Hypotrochoid</span> Curve traced by a point outside a circle rolling within another circle

In geometry, a hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle.

<span class="mw-page-title-main">Epitrochoid</span> Plane curve formed by rolling a circle on the outside of another

In geometry, an epitrochoid is a roulette traced by a point attached to a circle of radius r rolling around the outside of a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.

<span class="mw-page-title-main">Osculating circle</span> Circle of immediate corresponding curvature of a curve at a point

An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

<span class="mw-page-title-main">Trochoid</span> Curve traced by a circle rolling along a line

In geometry, a trochoid is a roulette curve formed by a circle rolling along a line. It is the curve traced out by a point fixed to a circle as it rolls along a straight line. If the point is on the circle, the trochoid is called common ; if the point is inside the circle, the trochoid is curtate; and if the point is outside the circle, the trochoid is prolate. The word "trochoid" was coined by Gilles de Roberval, referring to the special case of a cycloid.

<span class="mw-page-title-main">Inverse curve</span> Curve created by a geometric operation

In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k2. The inverse of the curve C is then the locus of P as Q runs over C. The point O in this construction is called the center of inversion, the circle the circle of inversion, and k the radius of inversion.