Cylinder 1024

Last updated

Cylinder 1024 is the first cylinder of a hard disk that was inaccessible in the original IBM PC compatible hardware specification, interrupt 13h, which uses cylinder-head-sector addressing. At boot time, the BIOS of many very old PCs could only access the first 1024 cylinders, numbered 0 to 1023, as the specific CHS addressing used by the BIOS interrupt 13 API only defines 10 bits for the cylinder count (2^10=1024).

This was a problem for operating systems on the x86 platform as the BIOS must be able to load the bootloader and the entire kernel image into memory. Both of these must, therefore, be located on the first 1024 cylinders of the disk.

Older versions of Microsoft Windows resolved this by necessitating that the operating system was installed to the first partition. Partly because of this bug, users of the Linux operating system have traditionally created a /boot partition to reside within the first 1024 cylinders of the disk, containing little more than the kernel and bootloader.

See also

Related Research Articles

<span class="mw-page-title-main">Booting</span> Process of starting a computer

In computing, booting is the process of starting a computer as initiated via hardware such as a button or by a software command. After it is switched on, a computer's central processing unit (CPU) has no software in its main memory, so some process must load software into memory before it can be executed. This may be done by hardware or firmware in the CPU, or by a separate processor in the computer system.

<span class="mw-page-title-main">Disk partitioning</span> Creation of separate accessible storage areas on a secondary computer storage device

Disk partitioning or disk slicing is the creation of one or more regions on secondary storage, so that each region can be managed separately. These regions are called partitions. It is typically the first step of preparing a newly installed disk, before any file system is created. The disk stores the information about the partitions' locations and sizes in an area known as the partition table that the operating system reads before any other part of the disk. Each partition then appears to the operating system as a distinct "logical" disk that uses part of the actual disk. System administrators use a program called a partition editor to create, resize, delete, and manipulate the partitions. Partitioning allows the use of different filesystems to be installed for different kinds of files. Separating user data from system data can prevent the system partition from becoming full and rendering the system unusable. Partitioning can also make backing up easier. A disadvantage is that it can be difficult to properly size partitions, resulting in having one partition with too much free space and another nearly totally allocated.

<span class="mw-page-title-main">Boot sector</span> Sector of a persistent data storage device

A boot sector is the sector of a persistent data storage device which contains machine code to be loaded into random-access memory (RAM) and then executed by a computer system's built-in firmware.

<span class="mw-page-title-main">GNU GRUB</span> Boot loader package

GNU GRUB is a boot loader package from the GNU Project. GRUB is the reference implementation of the Free Software Foundation's Multiboot Specification, which provides a user the choice to boot one of multiple operating systems installed on a computer or select a specific kernel configuration available on a particular operating system's partitions.

NTLDR is the boot loader for all releases of Windows NT operating system from 1993 with the release of Windows NT 3.1 up until Windows XP and Windows Server 2003. From Windows Vista onwards it was replaced by the BOOTMGR bootloader. NTLDR is typically run from the primary storage device, but it can also run from portable storage devices such as a CD-ROM, USB flash drive, or floppy disk. NTLDR can also load a non NT-based operating system given the appropriate boot sector in a file.

Logical block addressing (LBA) is a common scheme used for specifying the location of blocks of data stored on computer storage devices, generally secondary storage systems such as hard disk drives. LBA is a particularly simple linear addressing scheme; blocks are located by an integer index, with the first block being LBA 0, the second LBA 1, and so on.

<span class="mw-page-title-main">Multi-booting</span> Act of installing multiple operating systems on a single computer

Multi-booting is the act of installing multiple operating systems on a single computer, and being able to choose which one to boot. The term dual-booting refers to the common configuration of specifically two operating systems. Multi-booting may require a custom boot loader.

<span class="mw-page-title-main">Bootloader</span> Software responsible for starting the computer and load other software to the CPU memory

A bootloader, also spelled as boot loader or called boot manager and bootstrap loader, is a computer program that is responsible for booting a computer.

The Macintosh Toolbox implements many of the high-level features of the Classic Mac OS, including a set of application programming interfaces for software development on the platform. The Toolbox consists of a number of "managers," software components such as QuickDraw, responsible for drawing onscreen graphics, and the Menu Manager, which maintain data structures describing the menu bar. As the original Macintosh was designed without virtual memory or memory protection, it was important to classify code according to when it should be loaded into memory or kept on disk, and how it should be accessed. The Toolbox consists of subroutines essential enough to be permanently kept in memory and accessible by a two-byte machine instruction; however it excludes core "kernel" functionality such as memory management and the file system. Note that the Toolbox does not draw the menu onscreen: menus were designed to have a customizable appearance, so the drawing code was stored in a resource, which could be on a disk.

<span class="mw-page-title-main">UEFI</span> Operating system software specification

UEFI is a set of specifications written by the UEFI Forum. They define the architecture of the platform firmware used for booting and its interface for interaction with the operating system. Examples of firmware that implement these specifications are AMI Aptio, Phoenix SecureCore Tiano, TianoCore EDK II and InsydeH2O.

vmlinux Executable file containing the Linux kernel

vmlinux is a statically linked executable file that contains the Linux kernel in one of the object file formats supported by Linux, which includes Executable and Linkable Format (ELF) and Common Object File Format (COFF). The vmlinux file might be required for kernel debugging, symbol table generation or other operations, but must be made bootable before being used as an operating system kernel by adding a multiboot header, bootsector and setup routines.

<span class="mw-page-title-main">Cylinder-head-sector</span> Historical method for giving addresses to physical data blocks on hard disk drives

Cylinder-head-sector (CHS) is an early method for giving addresses to each physical block of data on a hard disk drive.

<span class="mw-page-title-main">GUID Partition Table</span> Computer disk partitioning standard

The GUID Partition Table (GPT) is a standard for the layout of partition tables of a physical computer storage device, such as a hard disk drive or solid-state drive, using universally unique identifiers, which are also known as globally unique identifiers (GUIDs). Forming a part of the Unified Extensible Firmware Interface (UEFI) standard, it is nevertheless also used for some BIOS systems, because of the limitations of master boot record (MBR) partition tables, which use 32 bits for logical block addressing (LBA) of traditional 512-byte disk sectors.

INT 13h is shorthand for BIOS interrupt call 13hex, the 20th interrupt vector in an x86-based computer system. The BIOS typically sets up a real mode interrupt handler at this vector that provides sector-based hard disk and floppy disk read and write services using cylinder-head-sector (CHS) addressing. Modern PC BIOSes also include INT 13h extension functions, originated by IBM and Microsoft in 1992, that provide those same disk access services using 64-bit LBA addressing; with minor additions, these were quasi-standardized by Phoenix Technologies and others as the EDD BIOS extensions.

An extended boot record (EBR), or extended partition boot record (EPBR), is a descriptor for a logical partition under the common DOS disk drive partitioning system. In that system, when one partition record entry in the master boot record (MBR) is designated an extended partition, then that partition can be subdivided into a number of logical partitions. The actual structure of that extended partition is described by one or more EBRs, which are located inside the extended partition. The first EBR will always be located on the very first sector of the extended partition.

<span class="mw-page-title-main">EFI system partition</span> Partition used by Unified Extensible Firmware Interface

The EFIsystem partition or ESP is a partition on a data storage device that is used by computers having the Unified Extensible Firmware Interface (UEFI). When a computer is booted, UEFI firmware loads files stored on the ESP to start installing operating systems and various utilities.

The host protected area (HPA) is an area of a hard drive or solid-state drive that is not normally visible to an operating system. It was first introduced in the ATA-4 standard CXV (T13) in 2001.

The multi-stage booting process of Linux is in many ways similar to the BSD and other Unix-style boot processes, from which it derives.

A master boot record (MBR) is a special type of boot sector at the very beginning of partitioned computer mass storage devices like fixed disks or removable drives intended for use with IBM PC-compatible systems and beyond. The concept of MBRs was publicly introduced in 1983 with PC DOS 2.0.

<span class="mw-page-title-main">MS-DOS 7</span>

MS-DOS 7 is a real mode operating system for IBM PC compatibles. Unlike earlier versions of MS-DOS it was not released separately by Microsoft, but included in the Windows 9x family of operating systems. Windows 95 RTM reports to be MS-DOS 7.0, while Windows 95 OSR 2.x and Windows 98 report as 7.1. Windows 9x runs under DOS similar to Windows 3.1x, and while according to Microsoft the role of MS-DOS was reduced to a bootloader and acted as the 16-bit legacy device driver layer, it has been stated that there is almost no difference in the relationship between Windows 9x and its included MS-DOS 7.x and Windows 3.x and MS-DOS 6.x. The real-mode MS-DOS 7.x operating system is contained in the IO.SYS file.