DARPA LAGR Program

Last updated

The Learning Applied to Ground Vehicles (LAGR) program, which ran from 2004 until 2008, had the goal of accelerating progress in autonomous, perception-based, off-road navigation in robotic unmanned ground vehicles (UGVs). LAGR was funded by DARPA, a research agency of the United States Department of Defense.

Contents

History and background

While mobile robots had been in existence since the 1960s, (e.g. Shakey), progress in creating robots that could navigate on their own, outdoors, off-road, on irregular, obstacle-rich terrain had been slow. In fact no clear metrics were in place to measure progress. [1] A baseline understanding of off-road capabilities began to emerge with the DARPA PerceptOR program [2] in which independent research teams fielded robotic vehicles in unrehearsed Government tests that measured average speed and number of required operator interventions over a fixed course over widely spaced waypoints. These tests exposed the extreme challenges of off-road navigation. While the PerceptOR vehicles were equipped with sensors and algorithms that were state-of-the-art for the beginning of the 21st century, the limited range of their perception technology caused them to become trapped in natural cul-de-sacs. Furthermore, their reliance on pre-scripted behaviors did not allow them to adapt to unexpected circumstances. The overall result was that except for essentially open terrain with minimal obstacles, or along dirt roads, the PerceptOR vehicles were unable navigate without numerous, repeated operator intervention.

The LAGR program was designed to build on the methodology started in PerceptOR while seeking to overcome the technical challenges exposed by the PerceptOR tests.

LAGR goals

The principal goal of LAGR was to accelerate progress in off navigation of UGVs. Additional, synergistic goals included (1) establishing benchmarking methodology for measuring progress for autonomous robots operating in unstructured environments, (2) advancing machine vision and thus enabling long-range perception, and (3) increasing the number of institutions and individuals who were able to contribute to forefront UGV research.

Structure and rationale of the LAGR program

The LAGR program was designed [3] to focus on developing new science for robot perception and control rather than on new hardware. Thus, it was decided to create a fleet of identical, relatively simple robots that would be supplied to the LAGR researchers, who were members of competitive teams, freeing them to concentrate on algorithm development. The teams were each given two robots of the standard design. They developed new software on these robots, and then sent the code to a Government test team that then tested that code on Government robots at various test courses. These courses were located throughout the US and were not previously known to the teams. In this way, the code from all teams could be tested in essentially identical circumstances. After an initial startup period, the code development/test cycle was repeated about once every month.

The standard robot was designed and built by the Carnegie Mellon University National Robotics Engineering Center (CMU NREC). The vehicles’ computers were preloaded with a modular “Baseline” perception and navigation system that was essentially the same system that CMU NREC had created for the PerceptOR program and was considered to represent the state-of-the-art at the inception of LAGR. The modular nature of the Baseline system allowed the researchers to replace parts of the Baseline code with their own modules and still have a complete working system without having to create an entire navigation system from scratch. Thus, for example, they were able to compare the performance of their own obstacle detection module with that of the Baseline code, while holding everything else fixed. The Baseline code also served as a fixed reference – in any environment and at any time in the program, teams’ code could be compared to the Baseline code. This rapid cycle gave the Government team and the performer teams quick feedback and allowed the Government team to design test courses that challenged the performers in specific perception tasks and whose difficulty was likely to challenge, but not overwhelm, the performers’ current capabilities. Teams were not required to submit new code for every test, but usually did. Despite this leeway, some teams found the rapid test cycle distracting to their long term progress and would have preferred a longer interval between tests.

Phase II

To advance to Phase II, each team had to modify the Baseline code so that on the final 3 tests of Phase I of the Government tests, robots running the team's code averaged at least 10% faster than a vehicle running the original Baseline code. This rather modest “Go/ No Go” metric was chosen to allow teams to choose risky, but promising approaches that might not be fully developed in the first 18 months of the program. All 8 teams achieved this metric, with some scoring more twice the speed of the Baseline on the later tests which was the objective for Phase II. Note that the Phase I Go / No Go metric was such that teams were not in completion with each other for a limited number of slots on Phase II: any number of teams, from eight to zero could make the grade. This strategy by DARPA was to designed to encourage cooperation and even code sharing among the teams.

The LAGR teams

Eight teams were selected as performers in Phase I, the first 18 months, of LAGR. The teams were from Applied Perception (Principal Investigator [PI] Mark Ollis), Georgia Tech (PI Tucker Balch), Jet Propulsion Laboratory (PI Larry Matthies), Net-Scale Technologies (PI Urs Muller), NIST (PI James Albus), Stanford University (PI Sebastian Thrun), SRI International (PI Robert Bolles), and University of Pennsylvania (PI Daniel Lee).

The Stanford team resigned at the end of Phase I to focus its efforts on the DARPA Grand Challenge; it was replaced by a team from the University of Colorado, Boulder (PI Greg Grudic). Also in Phase II, the NIST team suspended its participation in the competition and instead concentrated on assembling the best software elements from each team into a single system. Roger Bostelman became PI of that effort.

The LAGR vehicle

The LAGR Vehicle. About 30 were produced. They were about 1 meter high and weighed about 100 kg. Lagr-robot.jpg
The LAGR Vehicle. About 30 were produced. They were about 1 meter high and weighed about 100 kg.

The LAGR vehicle, which was about the size of a supermarket shopping cart, was designed to be simple to control. (A companion DARPA program, Learning Locomotion, [4] addressed complex motor control.) It was battery powered and had two independently driven wheelchair motors in the front, and two caster wheels in the rear. When the front wheels were rotated in the same direction the robot was driven either forward or reverse. When these wheels were driven in opposite directions, the robot turned.

The ~ $30,000 cost of the LAGR vehicle meant that a fleet could be built and distributed to a number of teams expanding on the field of researchers who had traditionally participated in DARPA robotics programs. The vehicle's top speed of about 3 miles/ hour and relatively modest weight of ~100 kg meant that it posed a much reduced safety hazard compared to vehicles used in previous programs in unmanned ground vehicles and thus further reduced the budget required for each team to manage its robot.

Nevertheless, the LAGR vehicles were sophisticated machines. Their sensor suite included 2 pairs of stereo cameras, an accelerometer, a bumper sensor, wheel encoders, and a GPS. The vehicle also had three computers that were user-programmable.

Scientific results

A cornerstone of the program was incorporation of learned behaviors in the robots. In addition, the program used passive optical systems to accomplish long-range scene analysis.

The difficulty of testing UGV navigation in unstructured, off-road environments made accurate, objective measurement of progress a challenging task. While no absolute measure of performance had been defined in LAGR, the relative comparison of a team's code to that of the Baseline code on a given course demonstrated whether progress was being made in that environment. By the conclusion of the program, testing showed that many of the performers had attained leaps in performance. In particular, average autonomous speeds where increased by factor of 3 and useful visual perception was extended to ranges as far as 100 meters. [5]

While LAGR did succeed in extending the useful range of visual perception, this was primarily done by either pixel or patch-based color or texture analysis. Object recognition was not directly addressed.

Even though the LAGR vehicle had a WAAS GPS, its position was never determined down to the width of the vehicle, so it was hard for the systems to re-use obstacle maps of areas the robots had previously traversed since the GPS continually drifted. The drift was especially severe if there was a forest canopy. A few teams developed visual odometry algorithms that essentially eliminated this drift.

LAGR also had the goal of expanding the number of performers and removing the need for large system integration so that valuable technology nuggets created by small teams could be recognized and then adopted by the larger community.

Some teams developed rapid methods for learning with a human teacher: a human could Radio Control (RC) operate the robot and give signals specifying “safe” and “non-safe” areas and the robot could quickly adapt and navigate with the same policy. This was demonstrated when the robot was taught to be aggressive in driving over dead weeds while avoiding bushes or alternatively taught to be timid and only drive on mowed paths.

LAGR was managed in tandem with the DARPA Unmanned Ground Combat Vehicle – PerceptOR Integration Program (UPI) CMU NREC UPI Website. UPI combined advanced perception with a vehicle of extreme mobility. The best stereo algorithms and the visual odometry from LAGR were ported to UPI. In addition interactions between the LAGR PIs and the UPI team resulted in the incorporation of adaptive technology into the UPI codebase with a resultant improvement in performance of the UPI "Crusher" robots.

Program management

LAGR was administered under the DARPA Information Processing Technology Office. Larry Jackel conceived the program and was the program manager from 2004 to 2007. Eric Krotkov, Michael Perschbacher, and James Pippine contributed to LAGR conception and management. Charles Sullivan played a major role in LAGR testing. Tom Wagner was the program manager from mid-2007 to the program conclusion in early 2008.

Related Research Articles

<span class="mw-page-title-main">DARPA</span> Agency of the U.S. Department of Defense

The Defense Advanced Research Projects Agency (DARPA) is a research and development agency of the United States Department of Defense responsible for the development of emerging technologies for use by the military.

An autonomous robot is a robot that acts without recourse to human control. The first autonomous robots environment were known as Elmer and Elsie, which were constructed in the late 1940s by W. Grey Walter. They were the first robots in history that were programmed to "think" the way biological brains do and meant to have free will. Elmer and Elsie were often labeled as tortoises because of how they were shaped and the manner in which they moved. They were capable of phototaxis which is the movement that occurs in response to light stimulus.

<span class="mw-page-title-main">Military robot</span> Robotic devices designed for military applications

Military robots are autonomous robots or remote-controlled mobile robots designed for military applications, from transport to search & rescue and attack.

The DARPA Grand Challenge is a prize competition for American autonomous vehicles, funded by the Defense Advanced Research Projects Agency, the most prominent research organization of the United States Department of Defense. Congress has authorized DARPA to award cash prizes to further DARPA's mission to sponsor revolutionary, high-payoff research that bridges the gap between fundamental discoveries and military use. The initial DARPA Grand Challenge in 2004 was created to spur the development of technologies needed to create the first fully autonomous ground vehicles capable of completing a substantial off-road course within a limited time. The third event, the DARPA Urban Challenge in 2007, extended the initial Challenge to autonomous operation in a mock urban environment. The 2012 DARPA Robotics Challenge, focused on autonomous emergency-maintenance robots, and new Challenges are still being conceived. The DARPA Subterranean Challenge was tasked with building robotic teams to autonomously map, navigate, and search subterranean environments. Such teams could be useful in exploring hazardous areas and in search and rescue.

<span class="mw-page-title-main">Micro air vehicle</span> Class of very small unmanned aerial vehicle

A micro air vehicle (MAV), or micro aerial vehicle, is a class of man-portable miniature UAVs whose size enables them to be used in low-altitude, close-in support operations. Modern MAVs can be as small as 5 centimeters - compare Nano Air Vehicle. Development is driven by commercial, research, government, and military organizations; with insect-sized aircraft reportedly expected in the future. The small craft allow remote observation of hazardous environments or of areas inaccessible to ground vehicles. Hobbyists have designed MAVs for applications such as aerial robotics contests and aerial photography. MAVs can offer autonomous modes of flight.

<span class="mw-page-title-main">Future Combat Systems</span> Modernization program of United States Army

Future Combat Systems (FCS) was the United States Army's principal modernization program from 2003 to early 2009. Formally launched in 2003, FCS was envisioned to create new brigades equipped with new manned and unmanned vehicles linked by an unprecedented fast and flexible battlefield network. The U.S. Army claimed it was their "most ambitious and far-reaching modernization" program since World War II. Between 1995 and 2009, $32 billion was expended on programs such as this, "with little to show for it".

<span class="mw-page-title-main">Unmanned ground vehicle</span> Type of vehicle

An unmanned ground vehicle (UGV) is a vehicle that operates while in contact with the ground and without an onboard human presence. UGVs can be used for many applications where it may be inconvenient, dangerous, or impossible to have a human operator present. Generally, the vehicle will have a set of sensors to observe the environment, and will either autonomously make decisions about its behavior or pass the information to a human operator at a different location who will control the vehicle through teleoperation.

<span class="mw-page-title-main">European Land-Robot Trial</span>

The European Land-Robot Trial (ELROB) is a European event which demonstrates the abilities of modern robots.

<span class="mw-page-title-main">Robert C. Michelson</span> American academic (born 1951)

Robert C. Michelson is an American engineer and academic who invented the entomopter, a biologically inspired flapping-winged aerial robot, and who established the International Aerial Robotics Competition. Michelson's career began at the U.S. Naval Research Laboratory. He later became a member of the research faculty at the Georgia Institute of Technology. He is the author of three U.S. patents and over 100 journal papers, book chapters and reports. Michelson is the recipient of the 1998 AUVSI Pioneer Award and the 2001 Pirelli Award for the diffusion of scientific culture as well as the first Top Pirelli Prize.

<span class="mw-page-title-main">Mobile robot</span> Type of robot

A mobile robot is an automatic machine that is capable of locomotion. Mobile robotics is usually considered to be a subfield of robotics and information engineering.

<span class="mw-page-title-main">TerraMax</span> Trademark for autonomous/unmanned ground vehicle technology

TerraMax is the trademark for autonomous/unmanned ground vehicle technology developed by Oshkosh Defense. Primary military uses for the technology are seen as reconnaissance missions and freight transport in high-risk areas so freeing soldiers from possible attacks, ambushes or the threat of mines and IEDs. The technology could also be used in civilian settings, such as autonomous snow clearing at airports.

Crusher is a 13,200-pound (6,000 kg) autonomous off-road Unmanned Ground Combat Vehicle developed by researchers at the Carnegie Mellon University's National Robotics Engineering Center for DARPA. It is a follow-up on the previous Spinner vehicle. DARPA's technical name for the Crusher is Unmanned Ground Combat Vehicle and Perceptor Integration System, and the whole project is known by the acronym UPI, which stands for Unmanned Ground Combat Vehicle PerceptOR Integration.

The Unmanned Combat Armed Rotorcraft or UCAR was a program carried out by DARPA and the United States Army in 2002-2004 to develop an unmanned combat helicopter.

The Guidance, Control and Decision Systems Laboratory (GCDSL) is situated in the Department of Aerospace Engineering at the Indian Institute of Science in Bangalore, India. The Mobile Robotics Laboratory (MRL) is its experimental division. They are headed by Dr. Debasish Ghose, Full Professor.

<span class="mw-page-title-main">Legged Squad Support System</span> DARPA project for a legged robot

The Legged Squad Support System (LS3) was a DARPA project for a legged robot which could function autonomously as a packhorse for a squad of soldiers or marines. Like BigDog, its quadruped predecessor, the LS3 was ruggedized for military use, with the ability to operate in hot, cold, wet, and dirty environments. The LS3 was put into storage in late 2015.

<span class="mw-page-title-main">4D-RCS Reference Model Architecture</span> Reference model for military unmanned vehicles to identify and organize their software components

The 4D/RCS Reference Model Architecture is a reference model for military unmanned vehicles on how their software components should be identified and organized.

<span class="mw-page-title-main">Ripsaw (vehicle)</span> Unmanned ground vehicle

The Ripsaw is a series of developmental unmanned ground combat vehicles designed by Howe & Howe Technologies for evaluation by the United States Army.

<span class="mw-page-title-main">ASW Continuous Trail Unmanned Vessel</span>

The ASW Continuous Trail Unmanned Vessel (ACTUV) is a DARPA funded project launched in early 2010 to develop an anti-submarine drone. ASW is an acronym for Anti-Submarine Warfare. In January 2018 after successful sea trials it was announced that the "Sea Hunter" prototype has transitioned from DARPA to the Office of Naval Research for further development.

<span class="mw-page-title-main">National Robotics Engineering Center</span> Operating unit within the Robotics Institute of Carnegie Mellon University

The National Robotics Engineering Center (NREC) is an operating unit within the Robotics Institute (RI) of Carnegie Mellon University. NREC works closely with government and industry clients to apply robotic technologies to real-world processes and products, including unmanned vehicle and platform design, autonomy, sensing and image processing, machine learning, manipulation, and human–robot interaction.

Torc Robotics (Torc), an independent subsidiary of Daimler Truck, is an American autonomous truck company headquartered in Blacksburg, Virginia, with operations in Albuquerque, New Mexico; Austin, Texas; and Stuttgart, Germany. Torc is testing autonomous trucks in Virginia, New Mexico, and Texas and is taking a pure play approach to commercialization – focusing at first on one platform in one region.

References

  1. See especially appendix C, National Research Council of the National Academies, “Technology Development for Army Unmanned Ground Vehicles,” National Academies Press, Washington, D.C., 2002.
  2. E. Krotkov, S. Fish, L. Jackel, M. Perschbacher, and J. Pippine, “The DARPA PerceptOR evaluation experiments." Autonomous Robots, 22(1):pages 19-35, 2007.
  3. L.D. Jackel, Douglass Hackett, Eric Krotkov, Michael Perschbacher, James Pippine, and Charles Sullivan. “How DARPA structures its robotics programs to improve locomotion and navigation." Communications of the ACM, 50(11):pages 55-59, 2007.
  4. James Pippine, Douglas Hackett, Adam Watson, “ An overview of the Defense Advanced Research Projects Agency’s Learning Locomotion program,” International Journal of Robotic Research, Vol 30, Num 2, pages 141-144, 2011
  5. For detailed discussion of LAGR results see the Special Issues of Journal of Field Robotics, Vol 23 issues 11/12 2006 and Vol 26 issue 1/2 2009.