DW-link

Last updated
Diagram of the dw-link suspension, as implemented on an Iron Horse Sunday, showing the location of the virtual pivot point IHsunday.jpg
Diagram of the dw-link suspension, as implemented on an Iron Horse Sunday, showing the location of the virtual pivot point

The DW-link is a subset of the common four-bar system used widely in bicycle suspension. The four-bar system has been used on mountain bikes since the early days of suspension. Similar suspension systems to the DW-link have been used by Schwinn, Fisher and Karpiel. Currently a similar system is used by Giant and named "Maestro". DW-link gets its name from the designer and patent holder, mechanical engineer Dave Weagle. [1] Currently the DW-link has been licensed to the following bicycle companies: PIVOT Cycles, Ibis, Independent Fabrication, Turner Suspension Bicycles, and Iron Horse Bicycles. [1] The DW-link suspension design was used to win six Elite level UCI downhill World Championships from 2005 to 2007, the highest contested level of the sport. This winning streak made the dw-link the most successful linkage suspension platform in the history of the sport of downhill. [2] Dave Weagle also developed the Split Pivot suspension and Delta System which are both used in cycling.

Contents

Weagle's design currently holds multiple patents, including US7128329, [3] which is the world's first and remains to be the only published account on the method of mathematically and geometrically characterizing linkage chain/ belt-driven, and shaft-driven motorcycle and bicycle suspensions. The 7128329 introduced several new concepts and measurements to the suspension world, specifically the concept of characterizing anti-squat as a curve or area when graphed as a function of anti-squat versus compressive travel. The portfolio also proposed the same basic measurement for braking squat versus compressive travel distance. These measurements are now accepted as "anti-squat curves" and "braking squat curves" by some professionals in the field of vehicle suspension dynamics. [4]

Development

Recreational mountain biker Dave Weagle used his background in four-wheeled vehicle suspension dynamics to investigate the linkage axle path of bicycle suspension systems. The analysis method that Weagle developed stands as the first published text on the analysis of linkage suspension systems for chain driven wheels. Weagle's research was directed towards what is known among mountain bikers as "suspension bob." Analysis revealed that the "bob" was a result of the combined effects of load transfer during acceleration and the unbalanced forces of the rider's legs moving up and down. It was realized that the use of anti-squat could counteract the load transfer and pedaling induced forces that produced "suspension bob" and limited traction.

Overview

Bicycles have a short wheelbase relative to the height of their center of mass, when compared to other vehicles such as cars. Because bicycles are pedaled, their forward acceleration tends to be in surges while each pedal is under power. Because the driving force at the rear wheel is not aligned with the center of mass, the bicycle experiences a torque, according to Euler's second law. This torque is partially responsible for the compression of the rear suspension under power known as squat. Squat that occurs in time with pedaling is known as "suspension bob."

Suspension bob has three main causes:

On bikes which are subject to bob, the following two techniques can reduce it.

However, neither of these solutions are ideal as they hinder the suspension's ability to absorb small bumps or low-speed impacts while the bicycle is coasting (Note: "low-speed" does not refer to the velocity at which the vehicle is traveling, but the speed at which the suspension is compressed). In the case of excessive compression damping, this problem is known as overdamping.

The DW-link uses an anti-squat suspension design to counteract forces responsible for "suspension bob" and consequently removes the need for excessive compression damping. This allows the suspension to be much more active over low-speed impacts, allowing more traction.

Mechanics

The DW-link uses anti-squat to eliminate "suspension bob." Squat is defined as the tendency of rear suspension to compress under acceleration. The anti-squat used in the DW-link system is achieved by a minimisation of torque about the centre of mass. The DW-link system has also been designed to minimise pedal feedback caused by suspension travel.

Another major advantage of the DW-link is the lack of need of a floating brake system to achieve optimum suspension performance under braking. Typically, on single pivot suspension systems, a large amount of squat is experienced under braking without a floating brake design. [5] Subsequently, the suspension is less active under braking, resulting in a diminished amount of traction.

The dw-link design is engineered to balance the effects of acceleration and braking forces in order to improve traction and efficiency. It uses a kinematic suspension force called "position sensitive anti-squat." When a vehicle accelerates the suspension reacts (typically in the form of suspension compression) to a phenomenon called load transfer. [6] [7] The position-sensitive anti-squat of dw-link offsets the rearward load transfer that happens during vehicle acceleration. This unique attribute is mathematically proven to reduce efficiency losses, while improving traction, and bump sensitivity, and if properly engineered, will help minimize perceptible pedal feedback, when compared to other methods of achieving a similar offset of load transfer.[ citation needed ]

Related Research Articles

Anti-lock braking system Safety anti-skid braking system used on aircraft and land vehicles

An anti-lock braking system (ABS) is a safety anti-skid braking system used on aircraft and on land vehicles, such as cars, motorcycles, trucks, and buses. ABS operates by preventing the wheels from locking up during braking, thereby maintaining tractive contact with the road surface and allowing the driver to maintain more control over the vehicle.

Circle of forces

The circle of forces, traction circle, friction circle, or friction ellipse is a useful way to think about the dynamic interaction between a vehicle's tire and the road surface. The diagram below shows the tire from above, so that the road surface lies in the x-y plane. The vehicle to which the tire is attached is moving in the positive y direction.

Car suspension Suspension system for a vehicle

Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems must support both road holding/handling and ride quality, which are at odds with each other. The tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different.

Weight transfer

Weight transfer and load transfer are two expressions used somewhat confusingly to describe two distinct effects:

Double wishbone suspension Automotive independent suspension design

In automobiles, a double wishbone suspension is an independent suspension design using two wishbone-shaped arms to locate the wheel. Each wishbone or arm has two mounting points to the chassis and one joint at the knuckle. The shock absorber and coil spring mount to the wishbones to control vertical movement. Double wishbone designs allow the engineer to carefully control the motion of the wheel throughout suspension travel, controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more.

Swingarm

A swingarm, or "swinging arm" (UK), originally known as a swing fork or pivoted fork, is a single or double sided mechanical device which attaches the rear wheel of a motorcycle to its body, allowing it to pivot vertically. The main component of the rear suspension of most modern motorbikes and ATVs, it holds the rear axle firmly, while pivoting to absorb bumps and suspension loads induced by the rider, acceleration, and braking.

Tilting three-wheeler

A tilting three-wheeler, tilting trike, leaning trike, or even just tilter, is a three-wheeled vehicle and usually a narrow-track vehicle whose body and or wheels tilt in the direction of a turn. Such vehicles can corner without rolling over despite having a narrow axle track because they can balance some or all of the roll moment caused by centripetal acceleration with an opposite roll moment caused by gravity, as bicycles and motorcycles do. This also reduces the lateral acceleration experienced by the rider, which some find more comfortable than the alternative. The narrow profile can result in reduced aerodynamic drag and increased fuel efficiency. These types of vehicles have also been described as "man-wide vehicles" (MWV).

Beam axle

A beam axle, rigid axle or solid axle is a dependent suspension design in which a set of wheels is connected laterally by a single beam or shaft. Beam axles were once commonly used at the rear wheels of a vehicle, but historically they have also been used as front axles in four-wheel-drive vehicles. In most automobiles, beam axles have been replaced with front and rear independent suspensions.

Hub-center steering

Hub-center steering (HCS) is one of several different types of front end suspension/steering mechanisms used in motorcycles and cargo bicycles. Hub-center steering is characterized by the steering pivot points being inside the hub of the wheel, rather than above the wheel in the headstock as in the traditional layout. Most hub-center arrangements employ a swingarm that extends from the bottom of the engine/frame to the centre of the front wheel.

Bicycle and motorcycle dynamics Science behind the motion of bicycles and motorcycles

Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of these motions began in the late 19th century and continues today.

A motorcycle's suspension serves a dual purpose: contributing to the vehicle's handling and braking, and providing safety and comfort by keeping the vehicle's passengers comfortably isolated from road noise, bumps and vibrations.

Motorcycle fork Component of motorized two-wheelers

A motorcycle fork connects a motorcycle's front wheel and axle to its frame, typically via a yoke, also known as a triple clamp, which consists of an upper yoke joined to a lower yoke via a steering stem, a shaft that runs through the steering head, creating the steering axis. Most forks incorporate the front suspension and front brake, and allow the front wheel to rotate about the steering axis so that the bike may be steered. Most handlebars attach to the top clamp in various ways, while clip-on handlebars clamp to the fork tubes, either just above or just below the upper triple clamp.

Bicycle and motorcycle geometry

Bicycle and motorcycle geometry is the collection of key measurements that define a particular bike configuration. Primary among these are wheelbase, steering axis angle, fork offset, and trail. These parameters have a major influence on how a bike handles.

Turner Suspension Bicycles, Inc is an American bicycle frame manufacturer, based in Murrieta, California, specializing in full suspension mountain bikes. Turner Bikes was founded in 1994 by David Turner, a former professional mountain bike rider who had ridden for the Marin and Mongoose teams, amongst others. Turner had also worked with Horst Leitner at AMP Research whilst Horst developed the Horst Link suspension design.

Bicycle suspension Bicycle part

Bicycle suspension is the system, or systems, used to suspend the rider and bicycle in order to insulate them from the roughness of the terrain. Bicycle suspension is used primarily on mountain bikes, but is also common on hybrid bicycles.

Motorcycle frame Frame of a motorcycle

A motorcycle frame is a motorcycle's core structure. It supports the engine, provides a location for the steering and rear suspension, and supports the rider and any passenger or luggage. Also attached to the frame are the fuel tank and battery. At the front of the frame is found the steering head tube that holds the pivoting front fork, while at the rear there is a pivot point for the swingarm suspension motion. Some motorcycles include the engine as a load-bearing stressed member; while some other bikes do not use a single frame, but instead have a front and a rear subframe attached to the engine.

Motorcycle tyre

Motorcycle tyres are the outer part of motorcycle wheels, attached to the rims, providing traction, resisting wear, absorbing surface irregularities, and allowing the motorcycle to turn via countersteering. The two tyres' contact patches are the motorcycle's connection to the ground, and so are fundamental to the motorcycle's suspension behaviour, and critically affect safety, braking, fuel economy, noise, and rider comfort.

Camber thrust

Camber thrust and camber force are terms used to describe the force generated perpendicular to the direction of travel of a rolling tire due to its camber angle and finite contact patch. Camber thrust is generated when a point on the outer surface of a leaned and rotating tire, that would normally follow a path that is elliptical when projected onto the ground, is forced to follow a straight path while coming in contact with the ground, due to friction. This deviation towards the direction of the lean causes a deformation in the tire tread and carcass that is transmitted to the vehicle as a force in the direction of the lean.

Norman Hugh Hossack is a Scottish inventor and engineer, who invented the Hossack motorcycle front suspension system, used on some BMW Motorrad K series motorcycles.

References

  1. "Union Cycliste Internationale" . Retrieved 2009-03-31.
  2. "USPTO Patent Full-Text and Image Database: United States Patent 7,128,329, Weagle, October 31, 2006" . Retrieved 2009-07-29.
  3. Foale, Tony (2006). Motorcycle Handling and Chassis Design (Second ed.). Tony Foale Designs. pp. 9-15–9-20. ISBN   978-84-933286-3-4.
  4. Foale, Tony (2006). Motorcycle Handling and Chassis Design (Second ed.). Tony Foale Designs. pp. 9–25. ISBN   978-84-933286-3-4.
  5. Foale, Tony (2006). Motorcycle Handling and Chassis Design (Second ed.). Tony Foale Designs. pp. 9–1. ISBN   978-84-933286-3-4.
  6. Cossalter, Vittore (2006). Motorcycle Dynamics (Second ed.). Lulu.com. pp. 84–85. ISBN   978-1-4303-0861-4.