# Wheelbase

Last updated

In both road and rail vehicles, the wheelbase is the horizontal distance between the centers of the front and rear wheels. For road vehicles with more than two axles (e.g. some trucks), the wheelbase is the distance between the steering (front) axle and the centerpoint of the driving axle group. In the case of a tri-axle truck, the wheelbase would be the distance between the steering axle and a point midway between the two rear axles. [1]

## Vehicles

The wheelbase of a vehicle equals the distance between its front and rear wheels. At equilibrium, the total torque of the forces acting on a vehicle is zero. Therefore, the wheelbase is related to the force on each pair of tires by the following formula:

${\displaystyle F_{f}={d_{r} \over L}mg}$
${\displaystyle F_{r}={d_{f} \over L}mg}$

where ${\displaystyle F_{f}}$ is the force on the front tires, ${\displaystyle F_{r}}$ is the force on the rear tires, ${\displaystyle L}$ is the wheelbase, ${\displaystyle d_{r}}$ is the distance from the center of mass (CM) to the rear wheels, ${\displaystyle d_{f}}$ is the distance from the center of mass to the front wheels (${\displaystyle d_{f}}$ + ${\displaystyle d_{r}}$ = ${\displaystyle L}$), ${\displaystyle m}$ is the mass of the vehicle, and ${\displaystyle g}$ is the gravity constant. So, for example, when a truck is loaded, its center of gravity shifts rearward and the force on the rear tires increases. The vehicle will then ride lower. The amount the vehicle sinks will depend on counter acting forces, like the size of the tires, tire pressure, and the spring rate of the suspension. If the vehicle is accelerating or decelerating, extra torque is placed on the rear or front tire respectively. The equation relating the wheelbase, height above the ground of the CM, and the force on each pair of tires becomes:

${\displaystyle F_{f}={d_{r} \over L}mg-{h_{cm} \over L}ma}$
${\displaystyle F_{r}={d_{f} \over L}mg+{h_{cm} \over L}ma}$

where ${\displaystyle F_{f}}$ is the force on the front tires, ${\displaystyle F_{r}}$ is the force on the rear tires, ${\displaystyle d_{r}}$ is the distance from the CM to the rear wheels, ${\displaystyle d_{f}}$ is the distance from the CM to the front wheels, ${\displaystyle L}$ is the wheelbase, ${\displaystyle m}$ is the mass of the vehicle, ${\displaystyle g}$ is the acceleration of gravity (approx. 9.8 m/s2), ${\displaystyle h_{cm}}$ is the height of the CM above the ground, ${\displaystyle a}$ is the acceleration (or deceleration if the value is negative). So, as is common experience, when the vehicle accelerates, the rear usually sinks and the front rises depending on the suspension. Likewise, when braking the front noses down and the rear rises. [2]

Because of the effect the wheelbase has on the weight distribution of the vehicle, wheelbase dimensions are crucial to the balance and steering. For example, a car with a much greater weight load on the rear tends to understeer due to the lack of the load (force) on the front tires and therefore the grip (friction) from them. This is why it is crucial, when towing a single-axle caravan, to distribute the caravan's weight so that down-thrust on the tow-hook is about 100 pounds force (400 N). Likewise, a car may oversteer or even "spin out" if there is too much force on the front tires and not enough on the rear tires. Also, when turning there is lateral torque placed upon the tires which imparts a turning force that depends upon the length of the tire distances from the CM. Thus, in a car with a short wheelbase ("SWB"), the short lever arm from the CM to the rear wheel will result in a greater lateral force on the rear tire which means greater acceleration and less time for the driver to adjust and prevent a spin out or worse.

Wheelbases provide the basis for one of the most common vehicle size class systems.

### Varying wheelbases within nameplate

Some luxury vehicles are offered with long-wheelbase variants to increase the spaciousness and therefore the luxury of the vehicle. This practice can often be found on full-size cars like the Mercedes-Benz S-Class, but ultra-luxury vehicles such as the Rolls-Royce Phantom and even large family cars like the Rover 75 came with 'limousine' versions. Prime Minister of the United Kingdom Tony Blair was given a long-wheelbase version of the Rover 75 for official use. [3] and even some SUVs like the VW Tiguan and Jeep Wrangler are available with long wheelbases.

In contrast, coupé varieties of some vehicles such as the Honda Accord are usually built on shorter wheelbases than the sedans they are derived from.

### Bikes

The wheelbase on many commercially available bicycles and motorcycles is so short, relative to the height of their centers of mass, that they are able to perform stoppies and wheelies.

### Skateboards

In skateboarding the word 'wheelbase' is used for the distance between the two inner pairs of mounting holes on the deck. This is different from the distance between the rotational centers of the two wheel pairs. A reason for this alternative use is that decks are sold with prefabricated holes, but usually without trucks and wheels. It is therefore easier to use the prefabricated holes for measuring and describing this characteristic of the deck.

A common misconception is that the choice of wheelbase is influenced by the height of the skateboarder. However, the length of the deck would then be a better candidate, because the wheelbase affects characteristics useful in different speeds or terrains regardless of the height of the skateboarder. For example, a deck with a long wheelbase, say 22 inches (55.9 cm), will respond slowly to turns, which is often desirable in high speeds. A deck with a short wheelbase, say 14 inches (35.6 cm), will respond quickly to turns, which is often desirable when skating backyard pools or other terrains requiring quick or intense turns.

## Rail

In rail vehicles, the wheelbase follows a similar concept. However, since the wheels may be of different sizes (for example, on a steam locomotive), the measurement is taken between the points where the wheels contact the rail, and not between the centers of the wheels.

On vehicles where the wheelsets (axles) are mounted inside the vehicle frame (mostly in steam locomotives), the wheelbase is the distance between the front-most and rear-most wheelsets.

On vehicles where the wheelsets are mounted on bogies (American: trucks), three wheelbase measurements can be distinguished:

• the distance between the pivot points of the front-most and rear-most bogie;
• the distance between the front-most and rear-most wheelsets of the vehicle;
• the distance between the front-most and rear-most wheelsets of each bogie.

The wheelbase affects the rail vehicle's capability to negotiate curves. Short-wheelbased vehicles can negotiate sharper curves. On some larger wheelbase locomotives, inner wheels may lack flanges in order to pass curves.

The wheelbase also affects the load the vehicle poses to the track, track infrastructure and bridges. All other conditions being equal, a shorter wheelbase vehicle represents a more concentrated load to the track than a longer wheelbase vehicle. As railway lines are designed to take a pre-determined maximum load per unit of length (tonnes per meter, or pounds per foot), the rail vehicles' wheelbase is designed according to their intended gross weight. The higher the gross weight, the longer the wheelbase must be.

## Related Research Articles

A bogie is a chassis or framework that carries a wheelset, attached to a vehicle—a modular subassembly of wheels and axles. Bogies take various forms in various modes of transport. A bogie may remain normally attached or be quickly detachable. It may include a suspension component within it, or be solid and in turn be suspended ; it may be mounted on a swivel, as traditionally on a railway carriage or locomotive, additionally jointed and sprung, or held in place by other means.

An axle or axletree is a central shaft for a rotating wheel or gear. On wheeled vehicles, the axle may be fixed to the wheels, rotating with them, or fixed to the vehicle, with the wheels rotating around the axle. In the former case, bearings or bushings are provided at the mounting points where the axle is supported. In the latter case, a bearing or bushing sits inside a central hole in the wheel to allow the wheel or gear to rotate around the axle. Sometimes, especially on bicycles, the latter type of axle is referred to as a spindle.

Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems must support both road holding/handling and ride quality, which are at odds with each other. The tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different.

Automobile handling and vehicle handling are descriptions of the way a wheeled vehicle responds and reacts to the inputs of a driver, as well as how it moves along a track or road. It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when moving in steady state condition. Numerous factors affect handling

Weight transfer and load transfer are two expressions used somewhat confusingly to describe two distinct effects:

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation of the wheel, roadbed, etc., is recovered when the pressure is removed. Two forms of this are hysteresis losses, and permanent (plastic) deformation of the object or the surface. Note that the slippage between the wheel and the surface also results in energy dissipation. Although some researchers have included this term in rolling resistance, some suggest that this dissipation term should be treated separately from rolling resistance because it is due to the applied torque to the wheel and the resultant slip between the wheel and ground, which is called slip loss or slip resistance. In addition, only the so-called slip resistance involves friction, therefore the name "rolling friction" is to an extent a misnomer.

An adhesion railway relies on adhesion traction to move the train, and is the most widespread and common type of railway in the world. Adhesion traction is the friction between the drive wheels and the steel rail. Since the vast majority of railways are adhesion railways, the term adhesion railway is used only when it is necessary to distinguish adhesion railways from railways moved by other means, such as by a stationary engine pulling on a cable attached to the cars or by railways that are moved by a pinion meshing with a rack.

A beam axle, rigid axle or solid axle is a dependent suspension design in which a set of wheels is connected laterally by a single beam or shaft. Beam axles were once commonly used at the rear wheels of a vehicle, but historically they have also been used as front axles in four-wheel-drive vehicles. In most automobiles, beam axles have been replaced with front and rear independent suspensions.

A dolly is an unpowered vehicle designed for connection to a tractor unit, truck or prime mover vehicle with strong traction power.

Hunting oscillation is a self-oscillation, usually unwanted, about an equilibrium. The expression came into use in the 19th century and describes how a system "hunts" for equilibrium. The expression is used to describe phenomena in such diverse fields as electronics, aviation, biology, and railway engineering.

Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of these motions began in the late 19th century and continues today.

The ZIS-151 was a general-purpose truck produced by the Soviet car manufacturer Automotive Factory No. 2 Zavod imeni Stalina in 1948–1958. In 1956, the factory was renamed to Zavod imeni Likhacheva, and new trucks were called ZIL-151 (ЗИЛ-151).

A flatbed truck is a type of truck the bodywork of which is just an entirely flat, level 'bed' with no sides or roof. This allows for quick and easy loading of goods, and consequently they are used to transport heavy loads that are not delicate or vulnerable to rain, and also for abnormal loads that require more space than is available on a closed body. Flatbed trucks can be either articulated or rigid.

Overhangs are the lengths of a road vehicle which extend beyond the wheelbase at the front and rear. They are normally described as front overhang and rear overhang. Practicality, style, and performance are affected by the size and weight of overhangs.

The GMC CCKW, also known as "Jimmy", or the G-508 by its Ordnance Supply Catalog nr, was a highly successful series of off-road capable, 212-ton, 6×6 trucks, built in large numbers to a standardized design for the U.S. Army, that saw heavy service, predominantly as cargo trucks, in both World War II and the Korean War. The original "Deuce and a Half", it formed the backbone of the famed Red Ball Express that kept Allied armies supplied as they pushed eastward after the Normandy invasion.

In vehicle acrobatics, a wheelie, or wheelstand, is a vehicle maneuver in which the front wheel or wheels come off the ground due to sufficient torque being applied to the rear wheel or wheels, or rider motion relative to the vehicle. Wheelies are usually associated with bicycles and motorcycles, but can be done with other vehicles such as cars, especially in drag racing and tractor pulling.

In automobiles, the axle track is the distance between the hub flanges on an axle. Wheel track, track width or simply track refers to the distance between the centerline of two wheels on the same axle. In the case of an axle with dual wheels, the centerline of the dual wheel assembly is used for the wheel track specification. Axle and wheel track are commonly measured in millimetres or inches.

A train wheel or rail wheel is a type of wheel specially designed for use on railway tracks. The wheel acts as a rolling component, typically press fitted onto an axle and mounted directly on a railway carriage or locomotive, or indirectly on a bogie, also called a truck. The powered wheels under the locomotive are called driving wheels. Wheels are initially cast or forged and then heat-treated to have a specific hardness. New wheels are machined using a lathe to a standardized shape, called a profile, before being installed onto an axle. All wheel profiles are regularly checked to ensure proper interaction between the wheel and the rail. Incorrectly profiled wheels and worn wheels can increase rolling resistance, reduce energy efficiency and may even cause a derailment. The International Union of Railways has defined a standard wheel diameter of 920 mm (36 in), although smaller sizes are used in some rapid transit railway systems and on ro-ro carriages.

The Diamond T 4-ton 6×6 truck was a heavy tactical truck built for the United States Army during World War II. Its G-number was G-509. Cargo models were designed to transport a 4-ton (3,600 kg) load over all terrain in all weather. There were also wrecker, dump, and other models. They were replaced by the M39 series 5-ton 6×6 trucks in the 1950s.

This glossary of automotive terms is a list of definitions of terms and concepts related to automobiles, including their parts, operation, and manufacture, as well as automotive engineering, auto repair, and the automotive industry in general. For more specific terminology regarding the design and classification of various automobile styles, see Glossary of automotive design; for terms related to transportation by road, see Glossary of road transport terms; for competitive auto racing, see Glossary of motorsport terms.

## References

1. Ruina, Andy; Rudra Pratap (2002). Introduction to Statics and Dynamics (PDF). Oxford University Press. p. 350. Retrieved 2007-03-23.
2. Biggs, Henry (October 27, 2004). "Rover 75". autoexpress.co.uk. Auto Express. Retrieved May 8, 2017.