Alloy wheel

Last updated
Alloy wheel on a Mercury Grand Marquis Alloy wheel mercury.jpg
Alloy wheel on a Mercury Grand Marquis

In the automotive industry, alloy wheels are wheels that are made from an alloy of aluminium or magnesium. Alloys are mixtures of a metal and other elements. They generally provide greater strength over pure metals, which are usually much softer and more ductile. Alloys of aluminium or magnesium are typically lighter for the same strength, provide better heat conduction, and often produce improved cosmetic appearance over steel wheels. Although steel, the most common material used in wheel production, is an alloy of iron and carbon, the term "alloy wheel" is usually reserved for wheels made from nonferrous alloys.

Contents

The earliest light-alloy wheels were made of magnesium alloys. Although they lost favor on common vehicles, they remained popular through the 1960s, albeit in very limited numbers. In the mid-to-late 1960s, aluminium-casting refinements allowed the manufacture of safer wheels that were not as brittle. Until this time, most aluminium wheels suffered from low ductility, usually ranging from 2-3% elongation. Because light-alloy wheels at the time were often made of magnesium (often referred to as "mags"), these early wheel failures were later attributed to magnesium's low ductility, when in many instances these wheels were poorly cast aluminium alloy wheels. Once these aluminium casting improvements were more widely adopted, the aluminium wheel took the place of magnesium as low cost, high-performance wheels for motorsports.

Characteristics

Lighter wheels can improve handling by reducing unsprung mass, allowing suspension to follow the terrain more closely and thus improve grip, however not all alloy wheels are lighter than their steel equivalents. Reduction in overall vehicle mass can also help to reduce fuel consumption.

Better heat conduction and a more open wheel design can help dissipate heat from the brakes, which improves braking performance in more demanding driving conditions and reduces the chance of diminished brake performance or even failure due to overheating.

Alloy wheels are also purchased for cosmetic purposes although the cheaper alloys used are usually not corrosion-resistant. Alloys allow the use of attractive bare-metal finishes, but these need to be sealed with paint or wheel covers. Even if so protected the wheels in use will eventually start to corrode after 3 to 5 years but refurbishment is now widely available at a cost. The manufacturing processes also allow intricate, bold designs. In contrast, steel wheels are usually pressed from sheet metal, and then welded together (often leaving unsightly bumps) and must be painted to avoid corrosion and/or hidden with wheel covers/hub caps.

Alloy wheels are prone to galvanic corrosion, which can cause the tires to leak air if appropriate preventive measures are not taken. Also, alloy wheels are more difficult to repair than steel wheels when bent, but their higher price usually makes repairs cheaper than replacement.

Alloy wheels are more expensive to produce than standard steel wheels, and thus are often not included as standard equipment, instead being marketed as optional add-ons or as part of a more expensive trim package. However, alloy wheels have become considerably more common since 2000[ citation needed ], now being offered on economy and subcompact cars, compared to a decade earlier where alloy wheels were often not factory options on inexpensive vehicles. Alloy wheels have long been included as standard equipment on higher-priced luxury or sports cars, with larger-sized or "exclusive" alloy wheels being options. The high cost of alloy wheels makes them attractive to thieves; to counter this, automakers and dealers often use locking lug nuts or bolts which require a special key to remove.

Most alloy wheels are manufactured using casting, but some are forged. Forged wheels are usually lighter, stronger, but much more expensive than cast wheels. There are two types of forged wheels: one piece and modular. Modular forged wheels may feature two- or three-piece design. Typical multi-piece wheels consist of the inner rim base, outer rim lip and wheel center piece with openings for lug nuts. All parts of a modular wheel are held with bolts. BBS RS is one of the most famous three-piece modular forged wheels. [1]

Aftermarket wheels

A sizable selection of alloy wheels are available to automobile owners who want lighter, more visually appealing, rarer, and/or larger wheels on their cars, going from 14 and 15 inch standard wheels up to 16, 17, 18, 19, 20, 21, 22, 24, 26, 28 and 30 inch wheel sizes. With the larger alloy wheels came Tru-Spinner Wheels and spinner wheel add-on spinners that would free-spin and continue to free-spin after the alloy wheel itself came to rest. American inventor James JD Gragg of International and American Tru-Spinners were the original ones and were leaders in the industry. Another function of Tru-Spinners was they could also spin backward as the alloy wheel was rolling forward. [2] Although replacing standard steel wheel and tire combinations with lighter alloy wheels and potentially lower profile tires can result in increased performance and handling, this doesn't necessarily hold when increasingly large wheels are employed. Research by Car and Driver conducted using a selection of differently sized alloy wheels from 16 to 19 in (41 to 48 cm) all outfitted with the same make and model of tires showed that both acceleration and fuel economy suffered with larger wheels. [3] They also noted that ride comfort and noise were negatively affected by the larger wheels.

Magnesium alloy wheels

Magnesium alloy wheels were the first die-cast wheels produced, and were often referred to as simply "mag wheels." Magnesium wheels were originally used for racing, but their popularity during the 1960s led to the development of other die-cast wheels, particularly of aluminium alloys. The term "mag wheels" became synonymous with die-cast wheels made from any material, from modern aluminium alloy wheels to plastic and composite wheels used on items like bicycles, wheelchairs, and skateboards. [4] [5]

However, pure magnesium wheels are no longer produced, being found only on classic cars. Pure magnesium suffers from many problems. Vintage magnesium rims were very susceptible to pitting, cracking and corrosion. Magnesium in bulk is hard to ignite but pure magnesium wheels can be ignited by a burning tire or by prolonged scraping of the wheel on the road surface following a puncture. Alloys of magnesium were later developed to alleviate most of these problems. [6] In fact, US Federal Aviation Administration has conducted wide-ranging tests over the past decade, and has reached a conclusion that potential flammability of magnesium is no longer deemed to be a concern. [7] Modern surface treatment technologies provide protection from corrosion and significantly extend the average lifecycle of magnesium rims.

Production methods

Forging

Forging can be done by a one or multistep process forging from various magnesium alloys, most commonly AZ80, ZK60 (MA14 in Russia). Wheels produced by this method are usually of higher toughness and ductility than aluminium wheels, although the costs are much higher. [8] Forging is a complicated process that involves such processes, as heating, rolling, applying high pressure, hammering and/or combination of these. [9] As a result, the crystal structure of the alloy changes, and as a result the material becomes stronger and more lightweight.

Assembly

There are one- two- and three-piece forged wheels. Every piece is originally an alloy billet, which is further transformed into a wheel, in cases of one-piece forged wheels, or into a wheel part in cases of multi-piece wheels.

High pressure die casting

This process uses a die arranged in a large machine that has high closing force to clamp the die closed. The molten magnesium is poured into a filler tube called a shot sleeve. A piston pushes the metal into the die with high speed and pressure, the magnesium solidifies, and the die is opened, and the wheel is released. Wheels produced by this method can offer reductions in price and improvements in corrosion resistance, but they are less ductile and of lower strength due to the nature of high pressure die casting.

Low pressure die casting

Gravity cast alloy bicycle wheel. 1960s Bootie Folding Cycle Bootie bicycle frunt wheel balloon tyre bootiebike com.jpg
Gravity cast alloy bicycle wheel. 1960s Bootie Folding Cycle

This process usually employs a steel die, it is arranged above the crucible filled with molten magnesium. Most commonly, the crucible is sealed against the die and pressurized air/cover gas mix is used to force the molten metal up a straw-like filler tube into the die. [10]

When processed using best practice methods, low pressure die casting wheels can offer improvements in ductility over magnesium wheels and any cast aluminium wheels, they remain less ductile than forged magnesium.

Gravity casting

Gravity-cast magnesium wheels have been in production since the early 1920s and provide good ductility, and relative properties above what can be made with aluminium casting. Tooling costs for gravity-cast wheels are among the cheapest of any process. This has allowed small batch production, flexibility in design and short development time.

See also

Related Research Articles

<span class="mw-page-title-main">Alloy</span> Mixture or metallic solid solution composed of two or more elements

An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, opacity, and luster, but may have properties that differ from those of the pure metals, such as increased strength or hardness. In some cases, an alloy may reduce the overall cost of the material while preserving important properties. In other cases, the mixture imparts synergistic properties to the constituent metal elements such as corrosion resistance or mechanical strength.

<span class="mw-page-title-main">Metallurgy</span> Field of science that studies the physical and chemical behavior of metals

Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys.

<span class="mw-page-title-main">Metal casting</span> Pouring liquid metal into a mold

In metalworking and jewelry making, casting is a process in which a liquid metal is delivered into a mold that contains a negative impression of the intended shape. The metal is poured into the mold through a hollow channel called a sprue. The metal and mold are then cooled, and the metal part is extracted. Casting is most often used for making complex shapes that would be difficult or uneconomical to make by other methods.

<span class="mw-page-title-main">Forging</span> Metalworking process

Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer or a die. Forging is often classified according to the temperature at which it is performed: cold forging, warm forging, or hot forging. For the latter two, the metal is heated, usually in a forge. Forged parts can range in weight from less than a kilogram to hundreds of metric tons. Forging has been done by smiths for millennia; the traditional products were kitchenware, hardware, hand tools, edged weapons, cymbals, and jewellery.

Aluminium–silicon alloys or Silumin is a general name for a group of lightweight, high-strength aluminium alloys based on an aluminum–silicon system (AlSi) that consist predominantly of aluminum - with silicon as the quantitatively most important alloying element. Pure AlSi alloys cannot be hardened, the commonly used alloys AlSiCu and AlSiMg can be hardened. The hardening mechanism corresponds to that of AlCu and AlMgSi. The rarely used wrought alloys in the 4000 series and the predominantly used cast alloys are standardised in the 40000 series.

<span class="mw-page-title-main">Die casting</span> Metal casting process

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.

<span class="mw-page-title-main">Custom wheel</span>

The term custom wheel refers to the wheels of a vehicle which have either been modified from the vehicle manufacturer's standard or have replaced the manufacturer's standard.

<span class="mw-page-title-main">Ductile iron</span> Type of cast iron

Ductile iron, also known as ductile cast iron, nodular cast iron, spheroidal graphite iron, spheroidal graphite cast iron and SG iron, is a type of graphite-rich cast iron discovered in 1943 by Keith Millis. While most varieties of cast iron are weak in tension and brittle, ductile iron has much more impact and fatigue resistance, due to its nodular graphite inclusions.

<span class="mw-page-title-main">Zamak</span> Metal alloy

ZAMAK is a family of alloys with a base metal of zinc and alloying elements of aluminium, magnesium, and copper.

<span class="mw-page-title-main">Foundry</span> Factory that produces metal castings

A foundry is a factory that produces metal castings. Metals are cast into shapes by melting them into a liquid, pouring the metal into a mold, and removing the mold material after the metal has solidified as it cools. The most common metals processed are aluminum and cast iron. However, other metals, such as bronze, brass, steel, magnesium, and zinc, are also used to produce castings in foundries. In this process, parts of desired shapes and sizes can be formed.

<span class="mw-page-title-main">Rays Engineering</span> Japanese wheel manufacturer

RAYS Co., Ltd. is a high-end Japanese wheel manufacturer for both motorsport and street use. Their flagship brand, Volk Racing wheels, features a high-tech forging process exclusive to Rays Engineering.

Magnesium wheels are wheels manufactured from alloys which contain mostly magnesium. Magnesium wheels are produced either by casting (metalworking), or by forging. Magnesium has several key properties that make it an attractive base metal for wheels: lightness; a high damping capacity; and a high specific strength. Magnesium is the lightest metallic structural material available. It is 1.5 times less dense than aluminium, so magnesium wheels can be designed to be significantly lighter than aluminium alloy wheels, while exhibiting comparable strength. Many competitive racing wheels are made of magnesium alloy.

<span class="mw-page-title-main">Magnesium alloy</span> Mixture of magnesium with other metals

Magnesium alloys are mixtures of magnesium with other metals, often aluminium, zinc, manganese, silicon, copper, rare earths and zirconium. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminium, copper and steel; therefore, magnesium alloys are typically used as cast alloys, but research of wrought alloys has been more extensive since 2003. Cast magnesium alloys are used for many components of modern automobiles and have been used in some high-performance vehicles; die-cast magnesium is also used for camera bodies and components in lenses.

<span class="mw-page-title-main">Aluminium alloy</span> Alloy in which aluminium is the predominant metal

An aluminium alloy is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.

6061 aluminium alloy is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

<span class="mw-page-title-main">BBS Kraftfahrzeugtechnik</span> Car wheel manufacturer

BBS Kraftfahrzeugtechnik AG is a high-performance automobile wheel design company headquartered in Schiltach, Germany. BBS produces wheels for motorsport, OEM, and aftermarket applications. The company is often credited as pioneering the three-piece wheel and advancing the aluminum wheel industry over many decades, and remains one of the largest producers of automobile wheels in the world. It is a part of KW Automotive since 2021.

The skin of an aircraft is the outer surface which covers much of its wings and fuselage. The most commonly used materials are aluminum and aluminium alloys with other metals, including zinc, magnesium and copper.

<span class="mw-page-title-main">Wobbly-web wheel</span> A form of metal disc wheel

The wobbly-web wheel is a form of metal disc wheel where the disc is 'wobbled' into spokes. This provides a stiffer, lightweight wheel.

<span class="mw-page-title-main">Wheel construction</span>

Wheel construction refers to the making of wheels. Construction of wire-spoked wheels is generally termed as wheelbuilding, so wheel construction refers to construction of non-wire wheels, e.g. wheels of cars and other heavier vehicles. Wheels are constructed in a wide variety of designs using different materials, but in the early 21st century, aluminum and steel are most often used, with steel-made wheels being heavier and more durable than aluminum wheels. The performance of a wheel depends on the alloy and technique used to construct it. A wheel is usually made up of a rim, which connects with the tire, and a central disc, also known as the disc or spider, which connects the wheel to the vehicle. Wheels are usually of two types: semi-drop center (SDC), used in trucks, and drop center (DC), used in other vehicles.

<span class="mw-page-title-main">Fuchs wheel</span>

The Fuchs wheel, or 'Fuchs felge', is a specialty wheel made for the first Porsche 911 model in the early 1960s. Designed in conjunction with Otto Fuchs KG, Porsche modeler Heinrich Klie and Ferdinand Porsche Jr for the 1967 model year Porsche 911S, the Fuchs wheel was the first light-weight forged wheel to be fitted to a production automotive vehicle. They provided the rear-engined sports car with a reduction in unsprung mass, using a strong and lightweight alloy wheel.

References

  1. Brad Bowling (27 Feb 2004). Complete Wheel and Tire Buyer's Guide. KP Books. p. 95. ISBN   978-0873496612.
  2. "The World's Largest Wheel Database". Wheel-Size.com. Retrieved 2020-01-01.
  3. "Effects of Upsized Wheels and Tires Tested - Tech Dept. - Auto Reviews". Car and Driver. 9 April 2010. Retrieved 2011-08-08.
  4. The ultimate hot rod dictionary: a-bombs to zoomies By Jeff Breitenstein, Troy Paiva - MBI Publishing 2004 Page 130
  5. The biomedical engineering handbook By Joseph D. Bronzino - CRC Press 2000 Page 141-4
  6. Automotive Detailing: A Complete Car Care Guide for Auto Enthusiasts and Detailing Professionals By Don Taylor - HP Books 1998 Page 72
  7. "Evaluating the Flammability of Various Magnesium Alloys During Laboratory- and Full-Scale Aircraft Fire Tests" (PDF). Federal Aviation Administration .
  8. f1wheels.com
  9. "What is Forging?". Thomasnet.com. April 2018.
  10. "The Manufacture of Aluminium Alloy Wheels | PDF | Applied And Interdisciplinary Physics | Metals". Scribd. Retrieved 2023-02-20.