This article needs additional citations for verification .(December 2016) |
A limited-slip differential (LSD) is a type of differential gear train that allows its two output shafts to rotate at different speeds but limits the maximum difference between the two shafts. Limited-slip differentials are often known by the generic trademark Positraction, a brand name owned by General Motors and originally used for its Chevrolet branded vehicles. [1]
In an automobile, such limited-slip differentials are sometimes used in place of a standard differential, where they convey certain dynamic advantages, at the expense of greater complexity.
In 1932, Ferdinand Porsche designed a Grand Prix racing car for the Auto Union company. The high power of the design caused one of the rear wheels to experience excessive wheel spin at any speed up to 160 km/h (100 mph). In 1935, Porsche commissioned the engineering firm ZF to design a limited-slip differential to improve performance.[ citation needed ] The ZF "sliding pins and cams" became available, [2] and one example was the Type B-70 used during the Second World War in the military VWs (Kübelwagen and Schwimmwagen), although technically this was not a limited-slip differential, but a system composed of two freewheels, which sent the whole of the engine power to the slower-turning of the two wheels. [3]
Limited-slip differentials were widely introduced by U.S. automakers in the late 1950s and were marketed under a wide variety of trademarked names. In early 1956, Packard introduced a clutch-type limited-slip differential under the Twin Traction trademark, promoting it as an aid for driving in severe winter weather. [4] In 1957, General Motors (GM) introduced a competing system for Chevrolet branded vehicles under the Positraction name. Within a few years, other American automotive brands introduced similar systems under a variety of names, including Safe-T-Track for GM's Pontiac brand and Anti Spin for its Oldsmobile brand, while the Ford Motor Company introduced Traction-Lok for Ford vehicles and Directed Power for its Lincoln cars. [1] Chrysler purchased Power-Lok units from Dana Incorporated and Spin-Resistant units from Borg-Warner, marketing both under the Sure-Grip name [5] on Chrysler, Dodge, and Plymouth vehicles. Limited-slip differentials became very popular and sought after during the muscle car era in the 1960s and 1970s. [1] Despite the myriad marketing names used by competing brands, the popularity of Chevrolet vehicles resulted in Positraction becoming a generic trademark in the U.S. for limited-slip differentials generally. [1]
The main advantage of a limited-slip differential is demonstrated by considering the case of a standard (or "open") differential in off-roading or snow situations where one wheel begins to slip. In such a case with a standard differential, the slipping or non-contacting wheel will receive the majority of the power (in the form of low-torque, high-rpm rotation), while the contacting wheel will remain stationary with respect to the ground. The torque transmitted by an open differential will always be equal at both wheels; if one tire is on a slippery surface, the supplied torque will easily overcome the available traction at a very low number. For example, the right tire might begin to spin as soon as 70 N⋅m (50 lb⋅ft) of torque is placed on it, since it is on an icy surface. Since the same amount of torque is always felt at both wheels, regardless of the speed at which they are turning, this means that the wheel with traction cannot receive more than 70 N⋅m (50 lb⋅ft) of torque either, which is far less than is required to move the vehicle. Meanwhile, the tire on the slippery surface will simply spin, absorbing all of the actual power output (which is a function of torque provided over the course of revolutions), even though both wheels are provided the same (very low) amount of torque. In this situation, a limited-slip differential prevents excessive power from being allocated to one wheel, and so keeps both wheels in powered rotation. [6]
The advantages of LSD in high-power, rear-wheel drive automobiles were demonstrated during the United States "Muscle-Car" era from the mid 1960s through the early 1970s. Cars of this era normally were rear-wheel drive and did not feature independent suspension for the rear tires (but instead used a live axle). With a live axle, when high torque is applied through the differential, the traction on the right rear tire is lower as the axle naturally wants to turn with the torsion of the drive shaft (but is held stationary by being mounted to the vehicle frame). This coined the terms "one wheel peel" or "one tire fire". As such, "Muscle-Cars" with LSD or "posi" (positraction) had a distinct advantage to their wheel-spinning counterparts.
Mechanical limited-slip differentials are considered essential to perform a proper drift. [7]
Both limited-slip differentials and open differentials have a gear train that allows the output shafts to spin at different speeds while holding the sum of their speeds proportional to that of the input shaft.
Automotive limited-slip differentials have some type of mechanism that applies a torque (internal to the differential) that resists the relative motion of the output shafts. In simple terms, this means they have some mechanism which resists a speed difference between the outputs, by creating a resisting torque between either the two outputs, or the outputs and the differential housing. There are many mechanisms used to create this resisting torque. Types of limited-slip differential typically are named from the type of the resisting mechanism. Examples include viscous and clutch-based LSDs. The amount of limiting torque provided by these mechanisms varies by design.
A limited-slip differential has a more complex torque-split and should be considered in the case when the outputs are spinning the same speed and when spinning at different speeds. The torque difference between the two axles is called Trq d . [8] (In this work it is called Trq f for torque friction [9] ). Trq d is the difference in torque delivered to the left and right wheel. The magnitude of Trq d comes from the slip-limiting mechanism in the differential and may be a function of input torque (as in the case of a gear differential), or the difference in the output speeds (as in the case of a viscous differential).
The torque delivered to the outputs is:
When traveling in a straight line, where one wheel starts to slip (and spin faster than the wheel with traction), torque is reduced to the slipping wheel (Trq 2 ) and provided to the slower wheel (Trq 1 ).
In the case when the vehicle is turning and neither wheel is slipping, the inside wheel will be turning slower than the outside wheel. In this case the inside wheel will receive more torque than the outside wheel, which can result in understeer. [9]
When both wheels are spinning at the same speed, the torque distribution to each wheel is:
This means the maximum torque to either wheel is statically indeterminate but is in the range of ½ Trq in ±( ½ Trq d ).
Several types of LSD are commonly used in passenger cars.
In this differential the maximum torque difference between the two outputs, Trq d , is a fixed value at all times regardless of torque input to the differential or speed difference between the two outputs. Typically this differential used spring-loaded clutch assemblies.
These limited-slip differentials use helical gears, clutches or cones (an alternative type of clutch) where the engagement force of the gears or clutch is a function of the input torque applied to the differential (as the engine applies more torque the gears or clutches grip harder and Trq d increases).
Torque sensing LSDs respond to driveshaft torque, so that the more driveshaft input torque present, the harder the clutches, cones or gears are pressed together, and thus the more closely the drive wheels are coupled to each other. Some include spring loading to provide some small torque so that with little or no input torque (trailing throttle/gearbox in neutral/main clutch depressed) the drive wheels are minimally coupled. The amount of preload (hence static coupling) on the clutches or cones is affected by the general condition (wear) and by how tightly they are loaded.
The clutch type has a stack of thin clutch-discs, half of which are coupled to one of the drive shafts, the other half of which are coupled to the spider gear carrier. The clutch stacks may be present on both drive shafts, or on only one. If on only one, the remaining drive shaft is linked to the clutched drive shaft through the spider gears. In a cone type the clutches are replaced by a pair of cones which are pressed together achieving the same effect.
One method for creating the clamping force is the use of a cam-ramp assembly such as used in a Salisbury/ramp style LSD. The spider gears mount on the pinion cross shaft which rests in angled cutouts forming cammed ramps. The cammed ramps are not necessarily symmetrical. If the ramps are symmetrical, the LSD is 2 way. If they are saw toothed (i.e. one side of the ramp is vertical), the LSD is 1 way. If both sides are sloped, but are asymmetric, the LSD is 1.5 way.
An alternative is to use the natural separation force of the gear teeth to load the clutch. An example is the center differential of the 2011 Audi Quattro RS 5. [10]
As the input torque of the driveshaft tries to turn the differential center, internal pressure rings (adjoining the clutch stack) are forced sideways by the pinion cross shaft trying to climb the ramp, which compresses the clutch stack. The more the clutch stack is compressed, the more coupled the wheels are. The mating of the vertical ramp (80–85° in practice to avoid chipping) surfaces in a one-way LSD on overrun produces no cam effect or corresponding clutch stack compression.
Broadly speaking, there are three input torque states: load, no load, and over run. During load conditions, as previously stated, the coupling is proportional to the input torque. With no load, the coupling is reduced to the static coupling. The behavior on over run (particularly sudden throttle release) determines whether the LSD is 1 way, 1.5 way, or 2 way.
A 2-way differential will have the same limiting torque Trq d in both the forward and reverse directions. This means the differential will provide some level of limiting action under engine braking. The early Packard Twin Traction unit is designed to function in this manner, which was promoted to provide a different benefit: if one rear drive wheel momentarily leaves the ground when it hits a bump with the differential under load, the airborne wheel will not spin freely and cause the vehicle to break traction when the spinning wheel touches the ground again. [4]
A 1-way differential will provide its limiting action in only one direction. When torque is applied in the opposite direction it behaves like an open differential. In the case of a FWD car it is argued to be safer than a 2-way differential. [11] The argument is if there is no additional coupling on over run, i.e. a 1-way LSD as soon as the driver lifts the throttle, the LSD unlocks and behaves somewhat like a conventional open differential. This is also the best for FWD cars, as it allows the car to turn in on throttle release, instead of ploughing forward. [11]
A 1.5-way differential refers to one where the forward and reverse limiting torques, Trq d_fwd, d_rev , are different but neither is zero as in the case of the 1-way LSD. This type of differential is common in racing cars where a strong limiting torque can aid stability under engine braking.
Geared, torque-sensitive mechanical limited-slip differentials use worm gears and spur gears to distribute and differentiate input power between two drive wheels or front and back axles. This is a completely separate design from the most common beveled spider gear designs seen in most automotive applications. As torque is applied to the gears, they are pushed against the walls of the differential housing, creating friction. The friction resists the relative movement of the outputs and creates the limiting torque Trq d .
Unlike other friction-based LSD designs that combine a common spider gear "open" differential in combination with friction materials that inhibit differentiation, the torque sensing design is a unique type of differential, with torque bias inherent in its design, not as an add-on. Torque bias is only applied when needed, and does not inhibit differentiation. The result is a true differential that does not bind up like LSD and locking types, but still gives increased power delivery under many road conditions.
Examples include:
Speed-sensitive differentials limit the torque difference between the outputs, Trq d , based on the difference in speed between the two output shafts. Thus for small output speed differences the differential’s behavior may be very close to an open differential. As the speed difference increases, the limiting torque increases. This results in different dynamic behavior as compared to a torque sensitive differential.
The viscous type is generally simpler because it relies on hydrodynamic friction from fluids with high viscosity. Silicone-based oils are often used. Here, a cylindrical chamber of fluid filled with a stack of perforated discs rotates with the normal motion of the output shafts. The inside surface of the chamber is coupled to one of the driveshafts, and the outside coupled to the differential carrier. Half of the discs are connected to the inner, the other half to the outer, alternating inner/outer in the stack. Differential motion forces the interleaved discs to move through the fluid against each other. In some viscous couplings when speed is maintained the fluid will accumulate heat due to friction. This heat will cause the fluid to expand, and expand the coupler causing the discs to be pulled together resulting in a non-viscous plate to plate friction and a dramatic drop in speed difference. This is known as the hump phenomenon and it allows the side of the coupler to gently lock. In contrast to the mechanical type, the limiting action is much softer and more proportional to the slip, and so is easier to cope with for the average driver. New Process Gear used a viscous coupling of the Ferguson style in several of their transfer cases including those used in the AMC Eagle.
Viscous LSDs are less efficient than mechanical types, that is, they "lose" some power. In particular, any sustained load which overheats the silicone results in sudden permanent loss of the differential effect. [18] They do have the virtue of failing gracefully, reverting to semi-open differential behavior. Typically a visco-differential that has covered 60,000 miles (97,000 km) or more will be functioning largely as an open differential. The silicone oil is factory sealed in a separate chamber from the gear oil surrounding the rest of the differential. This is not serviceable; when the differential's behavior deteriorates, the VLSD center must be replaced.
This style limited-slip differential works by using a gerotor pump to hydraulically compress a clutch to transfer torque to the wheel that is rotating slower. The gerotor pump uses the differential carrier or cage to drive the outer rotor of the pump and one axle shaft to drive the inner rotor. When there is a difference between the left and right wheels' speed, the pump pressurizes the hydraulic fluid causing the clutch to compress, thereby causing the torque to be transferred to the wheel that is rotating slower. These pump-based systems have lower and upper limits on applied pressure which allows the differential to work like a conventional or open differential until there is a significant speed difference between the right and left wheel, and internal damping to avoid hysteresis. The newest gerotor pump based system has computer regulated output for more versatility and no oscillation. [ citation needed ]
An electronic limited-slip differential will typically have a planetary or bevel gear set similar to that of an open differential and a clutch pack similar to that in a torque sensitive or gerotor pump based differential. In the electronic unit the clamping force on the clutch is controlled externally by a computer or other controller. This allows the control of the differential’s limiting torque, Trq d , to be controlled as part of a total chassis management system. An example of this type of differential is Subaru’s DCCD used in the Subaru WRX STi. [19] The Jeep Quadra-Drive II four-wheel-drive system produced beginning in 2005 utilizes this type of differential. [20] Another example is the Porsche PSD system used on the Porsche 928. An additional example is the SAAB XWD (Haldex Generation 4) with eLSD, which uses a common (electronically controlled via the vehicle computer network) hydraulic power pack to control both the longitudinal and transversal torque transfer of the XWD system. [21] The same Haldex system is used on several other GM Epsilon based vehicles such as the Cadillac SRX etc.
These systems are alternatives to a traditional limited-slip differential. The systems harness various chassis sensors such as speed sensors, anti-lock braking system (ABS) sensors, accelerometers, and microcomputers to electronically monitor wheel slip and vehicle motion. When the chassis control system determines a wheel is slipping, the computer applies the brakes to that wheel. A significant difference between the limited-slip differential systems listed above and this brake-based system, is that brake-based systems do not inherently send the greater torque to the slower wheel, plus the added brake friction material wear that results from the use of such a system if the vehicle is driven in an environment where the brake-based system will activate on a regular basis.
BMW's electronic limited-slip differential used on the F10 5 Series is an example of such a system. Another example began on the first year (1992) production of the re-styled, and new 4.6L V-8 overhead cam Ford Crown Victoria model with its optional anti-lock brakes. This option was available on the 1992 Crown Victoria, onward; on those cars equipped with anti-lock brakes.
In The Beach Boys' song "409", the lyrics mention the presence of a limited-slip differential: "...My four-speed, dual-quad, Positraction 4-0-9 (4-0-9, 4-0-9)."
In the 1992 film My Cousin Vinny , the proof of innocence of two young men falsely accused of murder relies heavily on a photograph of tire marks made by a car which has a limited-slip differential, which (as Marisa Tomei's character famously declares in an Oscar-winning performance) "was not available on the '64 Buick Skylark," [22] the car driven by the defendants. She argues that the evidence proves, rather, that the getaway car was a 1963 Pontiac Tempest, which did offer an optional Safe-T-Track (Pontiac's version of Positraction) limited-slip differential.
A differential is a gear train with three drive shafts that has the property that the rotational speed of one shaft is the average of the speeds of the others. A common use of differentials is in motor vehicles, to allow the wheels at each end of a drive axle to rotate at different speeds while cornering. Other uses include clocks and analogue computers. Differentials can also provide a gear ratio between the input and output shafts. For example, many differentials in motor vehicles provide a gearing reduction by having fewer teeth on the pinion than the ring gear.
A traction control system (TCS), is typically a secondary function of the electronic stability control (ESC) on production motor vehicles, designed to prevent loss of traction of the driven road wheels. TCS is activated when throttle input and engine power and torque transfer are mismatched to the road surface conditions.
A four-wheel drive, also called 4×4 or 4WD, is a two-axled vehicle drivetrain capable of providing torque to all of its wheels simultaneously. It may be full-time or on-demand, and is typically linked via a transfer case providing an additional output drive shaft and, in many instances, additional gear ranges.
Quattro is the trademark used by the automotive brand Audi to indicate that all-wheel drive (AWD) technologies or systems are used on specific models of its automobiles.
A transfer case is an intermediate gearbox that transfers power from the transmission of a motor vehicle to the driven axles of four-wheel-drive, all-wheel-drive, and other multi-axled on- and off-road machines. A part of the vehicle's drivetrain, it employs drive shafts to mechanically deliver motive power. The transfer case also synchronizes the difference between the rotation of the front and rear wheels, and may contain one or more sets of low range gears for off-road use.
A locking differential is a mechanical component, commonly used in vehicles, designed to overcome the chief limitation of a standard open differential by essentially "locking" both wheels on an axle together as if on a common shaft. This forces both wheels to turn in unison, regardless of the traction available to either wheel individually.
A drive shaft, driveshaft, driving shaft, tailshaft, propeller shaft, or Cardan shaft is a component for transmitting mechanical power, torque, and rotation, usually used to connect other components of a drivetrain that cannot be connected directly because of distance or the need to allow for relative movement between them.
Torsen Torque-Sensing is a type of limited-slip differential used in automobiles.
A viscous coupling is a mechanical device which transfers torque and rotation by the medium of a viscous fluid.
A worm drive is a gear arrangement in which a worm meshes with a worm wheel. Its main purpose is to translate the motion of two perpendicular axes or to translate circular motion to linear motion .The two elements are also called the worm screw and worm gear. The terminology is often confused by imprecise use of the term worm gear to refer to the worm, the worm wheel, or the worm drive as a unit.
BMW xDrive is the marketing name for the all-wheel drive system found on various BMW models since 2003. The system uses an electronically actuated clutch-pack differential to vary the torque between the front and rear axles. Models with the DPC torque vectoring system also have a planetary gearset to overdrive an axle or rear wheel as required.
ATTESA is a four-wheel drive system used in some automobiles produced by the Japanese automaker Nissan, including some models under its luxury marque Infiniti.
Jeep uses a variety of four-wheel drive systems on their vehicles. These range from basic part-time systems that require the driver to move a control lever to send power to four wheels, to permanent four-wheel systems that monitor and sense traction needs at all four wheels automatically under all conditions.
Clutch control refers to the act of controlling the speed of a vehicle with a manual transmission by partially engaging the clutch plate, using the clutch pedal instead of the accelerator pedal. The purpose of a clutch is in part to allow such control; in particular, a clutch provides transfer of torque between shafts spinning at different speeds. In the extreme, clutch control is used in performance driving, such as starting from a dead stop with the engine producing maximum torque at high RPM.
A wheelspin occurs when the force delivered to the tire tread exceeds that of available tread-to-surface friction and one or more tires lose traction. This leads the wheels to "spin" and causes the driver to lose control over the tires that no longer have grip on the road surface. Wheelspin can also be done intentionally such as in drifting or doing a burnout.
Super Select is the brand name of a four-wheel drive system produced by Mitsubishi Motors, used worldwide except for North America, where it was initially known as Active-Trac. It was first introduced in 1991 with the then-new second generation of the Mitsubishi Pajero.
ControlTrac four-wheel drive is the brand name of a selectable automatic full-time four-wheel drive system offered by Ford Motor Company. The four-wheel drive system was designed and developed at BorgWarner under its TorqTransfer Systems division in the mid 1980s. BorgWarner calls the system Torque-On-Demand (TOD). ControlTrac was the first automatic system to use software control and no planetary or bevel geared center differential. Instead of a planetary or bevel geared center differential, the system uses a variable intelligent locking center multi-disc differential.
Differential steering is the means of steering a land vehicle by applying more drive torque to one side of the vehicle than the other. Differential steering is the primary means of steering tracked vehicles, such as tanks and bulldozers, is also used in certain wheeled vehicles commonly known as skid-steer, and even implemented in some automobiles, where it is called torque vectoring, to augment steering by changing wheel direction relative to the vehicle. Differential steering is distinct from torque steer, which is usually considered a negative side effect of drive-train design choices.
All Wheel Control (AWC) is the brand name of a four-wheel drive (4WD) system developed by Mitsubishi Motors. The system was first incorporated in the 2001 Lancer Evolution VII. Subsequent developments have led to S-AWC (Super All Wheel Control), developed specifically for the new 2007 Lancer Evolution. The system is referred by the company as its unique 4-wheel drive technology umbrella, cultivated through its motor sports activities and long history in rallying spanning almost half a century.
A drivetrain or transmission system, is the group of components that deliver mechanical power from the prime mover to the driven components. In automotive engineering, the drivetrain is the components of a motor vehicle that deliver power to the drive wheels. This excludes the engine or motor that generates the power. In marine applications, the drive shaft will drive a propeller, thruster, or waterjet rather than a drive axle, while the actual engine might be similar to an automotive engine. Other machinery, equipment and vehicles may also use a drivetrain to deliver power from the engine(s) to the driven components.
It might surprise some people to see this listed first, but a proper mechanical limited-slip diff is absolutely essential for drift.
...being able to run the driven wheels almost fully open under deceleration. In a powerful front-wheel drive scenario where torque steer is a constant enemy, this approach [1 way LSD] has some definite advantages.
...the gel used can quite suddenly alter with massive temperature, and lose its ability to generate torque transfer.