Dan Luss | |
---|---|
Born | |
Nationality | American |
Alma mater | University of Minnesota Technion Israel Institute of Technology |
Known for | Dynamics of chemical reactors Steady-state multiplicity, Modeling of multi-reaction systems, Complex reacting systems |
Awards | Alan P. Colburn Award (AIChE, 1972) National Academy of Engineering (1984) Wilhelm Award (AIChE, 1986) |
Scientific career | |
Fields | Chemical Engineer |
Institutions | University of Houston |
Doctoral advisor | Neal Amundson |
Dan Luss (born May 5, 1938) is an American chemical engineer, who is the Cullen Professor of Chemical Engineering at the University of Houston. He is known for his work in chemical reaction engineering, complex reacting systems, multiple steady-states reactor design, dynamics of chemical reactors, and combustion.
Luss received a Bachelor of Science degree in 1960 and Master of Science in chemical engineering in 1963 from Technion-Israel Institute of Technology in Haifa, Israel. In 1966, he received a Ph.D from the University of Minnesota in chemical engineering, with a thesis on reaction engineering supervised by Professor Neal Amundson. In 1966, he served one year as assistant professor of chemical engineering at the University of Minnesota Department of Chemical Engineering and Materials Science.
In 1967, Luss joined the chemical engineering department at the University of Houston as an assistant professor. Promotion to associate professor (1969-1972) and professor (1972–present) preceded his appointment as Cullen Professor in 1984. He served as chairmen of its department of chemical engineering first from 1975 to 1995 and again from 1999-2000, [1] and as associate director of the Texas Center for Superconductivity at the University of Houston in 1988. [2] He completely or jointly supervised nearly 75 Ph.D. and master's theses, and published well over 200 journal articles. [3]
Luss' research has been primarily in the causes of steady-state multiplicity and dynamics of chemical reactors. This research led to improvements in the safer operation of industrial reactors and to a more reliable development and operation of novel reactor types. He also made contributions to the modeling of multi-reaction systems leading to many follow-up studies. [4]
His group is currently conducting research on several topics. [5] The main emphasis is on problem related to the reduction of environmental emissions from diesel engines. These include enhancement of the efficiency and safety of the regeneration diesel particulate filters, development of novel catalyst architectures which improve the destruction of NOx and organic compounds emitted by diesel engines. We also conduct studies of novel synthesis of solid oxides and the dynamic features of the combustion of solid nano-particles. Specific research projects include:
A major research activity in his Department is the reduction of NOx emissions in the oxidizing exhaust emissions of diesel engines. This reduction may be conducted by use of selective Catalytic reduction catalyst (SCR) which required feed of ammonia precursor or by use of Lean NOx Trap (LNT) which contains expensive precious metals. Another option is the use a reactor with LNT catalyst followed by one with SCR to avoid the need to inject ammonia precursors. Luss and colleagues are conducting both experimental and simulation studies of novel catalyst architecture with goal to enable a reduction of the expensive precious metal without affecting the effectiveness of the NOx destruction.
The presence of excessive high local temperatures (hot spots) can severely damage chemical reactors and monolith reactors used to destruct environmental pollutants. There is a technological to detect the amplitude and motion of small hot zones the location of which is not known and which may meander with time. Dan Luss and colleagues have recently developed a novel technique for measuring the spatio-temporal temperature, which measures continuously the temporal temperature profile along a special optical fiber. The technique is currently used to measure the temperature profiles in a monolith reactor and a packed bed reactor in which several reactions are conducted. This novel technique is expected to lead to major advances in the measurements and control of temperature in chemical reactors and provide essential information that could not have been obtained until now.
Luss and colleagues have developed a novel method for the synthesis of solid oxides by having a high temperature front propagate through a mixture of carbon and some minerals. The method (which has a 2 mm spatial resolution and temperature resolution of 0.5 C) enables a more economic synthesis than do other methods. Moreover, it can be used directly to produce nano-particles. Luss and co-workers currently conduct studies on the impact of the operating conditions and reactants mixture composition on the product properties and the magnitude of the amplitude and duration of the pressure pulse generated by the released gaseous products and its dependence on the nano particles size.
Luss was awarded the Alan P. Colburn Award by the American Institute of Chemical Engineers in 1972 and elected to the National Academy of Engineering (NAE) in 1984. He was awarded the Wilhelm Award by the American Institute of Chemical Engineers in 1986 and became an AIChE Fellow in 1990. In 2005, he was awarded the Founders Award by the American Institute of Chemical Engineers (AIChE). In 2010, he was awarded the Near R. Amundson Award for Excellence in Chemical Reaction Engineering, which was awarded at the 2010 ISCRE symposium in Philadelphia, PA. In addition, he has served as editor for numerous publications including Reviews in Chemical Engineering, Industrial Engineering Chemical Research, Catalysis Reviews – Science and Engineering, and AIChE Journal. [6]
Dan Luss has authored numerous journal articles describing significant advances in chemical reaction engineering which includes but is not limited to:
The Haber process, also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. The German chemists Fritz Haber and Carl Bosch developed it in the first decade of the 20th century. The process converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using an iron metal catalyst under high temperatures and pressures. This reaction is slightly exothermic (i.e. it releases energy), meaning that the reaction is favoured at lower temperatures and higher pressures. It decreases entropy, complicating the process. Hydrogen is produced via steam reforming, followed by an iterative closed cycle to react hydrogen with nitrogen to produce ammonia.
A catalytic converter is an exhaust emission control device which converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalyzing a redox reaction. Catalytic converters are usually used with internal combustion engines fueled by gasoline or diesel, including lean-burn engines, and sometimes on kerosene heaters and stoves.
Selective catalytic reduction (SCR) means of converting nitrogen oxides, also referred to as NO
x with the aid of a catalyst into diatomic nitrogen, and water. A reductant, typically anhydrous ammonia, aqueous ammonia, or a urea solution, is added to a stream of flue or exhaust gas and is reacted onto a catalyst. As the reaction drives toward completion, nitrogen, and carbon dioxide, in the case of urea use, are produced.
A nitrogen oxide sensor or NOx sensor is typically a high-temperature device built to detect nitrogen oxides in combustion environments such as an automobile, truck tailpipe or smokestack.
In atmospheric chemistry, NOx is shorthand for nitric oxide and nitrogen dioxide, the nitrogen oxides that are most relevant for air pollution. These gases contribute to the formation of smog and acid rain, as well as affecting tropospheric ozone.
A NOx adsorber or NOx trap (also called Lean NOx trap, abbr. LNT) is a device that is used to reduce oxides of nitrogen (NO and NO2) emissions from a lean burn internal combustion engine by means of adsorption.
Selective non-catalytic reduction (SNCR) is a method to lessen nitrogen oxide emissions in conventional power plants that burn biomass, waste and coal. The process involves injecting either ammonia or urea into the firebox of the boiler at a location where the flue gas is between 1,400 and 2,000 °F (760 and 1,090 °C) to react with the nitrogen oxides formed in the combustion process. The resulting product of the chemical redox reaction is molecular nitrogen (N2), carbon dioxide (CO2), and water (H2O).
William C. Pfefferle was an American scientist and inventor.
Willis Harmon Ray is an American chemical engineer, control theorist, applied mathematician, and a Vilas Research emeritus professor at the University of Wisconsin–Madison notable for being the 2000 winner of the prestigious Richard E. Bellman Control Heritage Award and the 2019 winner of the Neal Amundson Award.
Neal Russell Amundson was an American chemical engineer and applied mathematician. He was the chair of the department of chemical engineering at the University of Minnesota for over 25 years. Later, he was the Cullen Professor of Chemical & Biomolecular Engineering and Mathematics at the University of Houston. Amundson was considered one of the most prominent chemical engineering educators and researchers in the United States. The Chemical Engineering and Materials Science building at the University of Minnesota-Twin Cities bears his name.
Reactive flash volatilization (RFV) is a chemical process that rapidly converts nonvolatile solids and liquids to volatile compounds by thermal decomposition for integration with catalytic chemistries.
Lanny D. Schmidt was an American chemist, inventor, author, and Regents Professor of Chemical Engineering and Materials Science at the University of Minnesota. He is well known for his extensive work in surface science, detailed chemistry (microkinetics), chemical reaction engineering, catalysis, and renewable energy. He is also well known for mentoring over a hundred graduate students and his work on millisecond reactors and reactive flash volatilization.
Chemical reaction engineering is a specialty in chemical engineering or industrial chemistry dealing with chemical reactors. Frequently the term relates specifically to catalytic reaction systems where either a homogeneous or heterogeneous catalyst is present in the reactor. Sometimes a reactor per se is not present by itself, but rather is integrated into a process, for example in reactive separations vessels, retorts, certain fuel cells, and photocatalytic surfaces. The issue of solvent effects on reaction kinetics is also considered as an integral part.
Arvind Varma was the R. Games Slayter Distinguished Professor, School of Chemical Engineering at Purdue University. His research interests are in chemical and catalytic reaction engineering, and new energy sources.
This bibliography of Rutherford Aris contains a comprehensive listing of the scientific publications of Aris, including books, journal articles, and contributions to other published material.
Yurii Shaevich Matros was a scientist in the field of chemical engineering, known for his achievement in the theory and practice of heterogeneous catalytic processes. He is acknowledged as a “Godfather” of realization of catalytic processes in forced unsteady state conditions. Matros developed a catalytic reactor with periodic changes of direction of flow rate in packed bed of catalyst. This reactor is widely known in scientific and applied literature as an example of an application of developed theory of forced unsteady processes. Yurii Matros possessed a full doctoral degree of science and was a professor.
Sivanandi Rajadurai aka Mylaudy Dr. S. Rajadurai is a scientist in the field of catalysis, physical chemistry, and emission control, focused on protection of the global environment and is a corporate executive. He is chairman of the Rajadurai Foundation.
Gilbert F. Froment is a Belgian Professor Emeritus of chemical engineering at Ghent University, Belgium, and a research professor at Texas A&M University. His career was in the fields of kinetic and chemical reaction engineering studies, as well as the use of that to solve problems in process industry.
Chemical looping reforming (CLR) and gasification (CLG) are the operations that involve the use of gaseous carbonaceous feedstock and solid carbonaceous feedstock, respectively, in their conversion to syngas in the chemical looping scheme. The typical gaseous carbonaceous feedstocks used are natural gas and reducing tail gas, while the typical solid carbonaceous feedstocks used are coal and biomass. The feedstocks are partially oxidized to generate syngas using metal oxide oxygen carriers as the oxidant. The reduced metal oxide is then oxidized in the regeneration step using air. The syngas is an important intermediate for generation of such diverse products as electricity, chemicals, hydrogen, and liquid fuels.
Alexis Tarassov Bell is an American chemical engineer. He is currently the Dow professor of Sustainable Chemistry in the Department of Chemical and Biomolecular Engineering in UC Berkeley's college of chemistry. He is also the Faculty Senior Scientist at Lawrence Berkeley National Laboratory. He is known for his work with heterogenous catalysts and characterizing the mechanisms of these reactions on a quantum level.