David Cohen (physicist)

Last updated

David Cohen made many of the first pioneering measurements in the area of biomagnetism (magnetic fields produced by the body), [1] although he was initially trained as a nuclear physicist.

Contents

Early life and education

Cohen was born of immigrant parents in Winnipeg, Manitoba, Canada. He was raised there and earned a B.A. degree at the University of Manitoba. Then, he attended graduate school at the University of California, Berkeley, where he gained a Ph.D. in experimental nuclear physics.

Career

Working in this area,[ which? ] and using large magnets, he became interested in the other extreme; this was the measurement of very weak magnetic fields, which for example might be produced by the weak natural currents in the human body. In 1963, he proposed a method using a magnetically shielded room to keep out external magnetic disturbances, as in radiation shielding in nuclear experiments. At that time others reported the first biomagnetic measurement, where the MCG (magnetocardiogram, the magnetic field due to heart currents) was measured; this was done without shielding, hence showed much external interference. Cohen then built a modest shielded room, and with somewhat clearer signals verified the heart's magnetic field. He also made the first measurement of the MEG ( magnetoencephalogram , the magnetic field of the brain). However, all these early biomagnetic measurements were generally too noisy, both because of the use of insensitive detectors, and incomplete magnetic shielding.

To obtain clearer results, in 1969 Cohen built an elaborate shielded room at MIT, but still needed a more sensitive detector. James Zimmerman had just developed [2] an extremely sensitive detector called the SQUID (Superconducting Quantum Interference Device). Cohen and Zimmerman set up this detector in the new room, to look at the body's heart signal, the MCG. For the first time the signals were now clear, and their resulting report, [3] called the magna carta of biomagnetism, [4] ushered in a new era in biomagnetism, attracting other researchers. Cohen then measured the first clear MEG, [5] and signals from other organs. As interest rapidly grew, other laboratories also produced new recordings. Today, most biomagnetic measurements are of the human brain (MEG); these are made in a shielded room, using a helmet over the head containing hundreds of SQUIDs. There are perhaps 200 such MEG systems in existence, worldwide.

Cohen continuously worked in biomagnetism, authored many publications, mostly concerning the MEG, and has been called "the father of the MEG". [6] He remains active in 2017, is on the faculty at the Harvard Medical School, and is a mentor in the MEG group at MIT's Martinos Imaging Center, located at Massachusetts General Hospital.

See also

Notes

  1. Cohen, D. Boston and the history of biomagnetism. Neurology & Clinical Neurophysiology Nov 30; 2004: 114.
  2. Zimmerman JE, Theine P, and Harding JT. Design and operation of stable rf-biased superconducting point-contact quantum devices, etc. Journal of Applied Physics 1970; 41:1572-1580.
  3. Cohen D, Edelsack EA, Zimmerman JE. Magnetocardiograms taken inside a shielded room with a superconducting point contact magnetometer. Applied Physics Letters 1970;16(7): 278-80.
  4. Science (Research News story by R. Crease), Sept.8, 1989; 1041-3.
  5. Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science 1972; 175:664-66.
  6. Science (Research News story by R. Crease), July 26, 1991; 374-5.

Related Research Articles

SQUID type of magnetometer

A SQUID is a very sensitive magnetometer used to measure extremely subtle magnetic fields, based on superconducting loops containing Josephson junctions.

Magnetometer Device that measures magnetism

A magnetometer is a device that measures magnetic field or magnetic dipole moment. Some magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, one that measures the direction of an ambient magnetic field, in this case, the Earth's magnetic field. Other magnetometers measure the magnetic dipole moment of a magnetic material such as a ferromagnet, for example by recording the effect of this magnetic dipole on the induced current in a coil.

Magnetoencephalography Mapping brain activity by recording magnetic fields produced by currents in the brain

Magnetoencephalography (MEG) is a functional neuroimaging technique for mapping brain activity by recording magnetic fields produced by electrical currents occurring naturally in the brain, using very sensitive magnetometers. Arrays of SQUIDs are currently the most common magnetometer, while the SERF magnetometer is being investigated for future machines. Applications of MEG include basic research into perceptual and cognitive brain processes, localizing regions affected by pathology before surgical removal, determining the function of various parts of the brain, and neurofeedback. This can be applied in a clinical setting to find locations of abnormalities as well as in an experimental setting to simply measure brain activity.

The first neuroimaging technique ever is the so-called 'human circulation balance' invented by Angelo Mosso in the 1880s and able to non-invasively measure the redistribution of blood during emotional and intellectual activity. Then, in the early 1900s, a technique called pneumoencephalography was set. This process involved draining the cerebrospinal fluid from around the brain and replacing it with air, altering the relative density of the brain and its surroundings, to cause it to show up better on an x-ray, and it was considered to be incredibly unsafe for patients. A form of magnetic resonance imaging (MRI) and computed tomography (CT) were developed in the 1970s and 1980s. The new MRI and CT technologies were considerably less harmful and are explained in greater detail below. Next came SPECT and PET scans, which allowed scientists to map brain function because, unlike MRI and CT, these scans could create more than just static images of the brain's structure. Learning from MRI, PET and SPECT scanning, scientists were able to develop functional MRI (fMRI) with abilities that opened the door to direct observation of cognitive activities.

James Edward Zimmerman was born in Lantry, South Dakota. He was a coinventor of the radio-frequency superconducting quantum interference device (SQUID) and he is credited with coining the term.

Neuroimaging Set of techniques to measure and visualize aspects of the nervous system

Neuroimaging or brain imaging is the use of various techniques to either directly or indirectly image the structure, function, or pharmacology of the nervous system. It is a relatively new discipline within medicine, neuroscience, and psychology. Physicians who specialize in the performance and interpretation of neuroimaging in the clinical setting are neuroradiologists. Neuroimaging falls into two broad categories:

Biomagnetism is the phenomenon of magnetic fields produced by living organisms; it is a subset of bioelectromagnetism. In contrast, organisms' use of magnetism in navigation is magnetoception and the study of the magnetic fields' effects on organisms is magnetobiology.

Olli Lounasmaa Finnish physicist and neuroscientist (1930–2002)

Olli Viktor Lounasmaa was a Finnish academician, experimental physicist and neuroscientist. He was known for his research in low temperature physics, especially for experimental proof of the superfluidity of helium-3 and also for his work in the field of magnetoencephalography.

Geophysical survey is the systematic collection of geophysical data for spatial studies. Detection and analysis of the geophysical signals forms the core of Geophysical signal processing. The magnetic and gravitational fields emanating from the Earth's interior hold essential information concerning seismic activities and the internal structure. Hence, detection and analysis of the electric and Magnetic fields is very crucial. As the Electromagnetic and gravitational waves are multi-dimensional signals, all the 1-D transformation techniques can be extended for the analysis of these signals as well. Hence this article also discusses multi-dimensional signal processing techniques.

Magnetocardiography Technique to measure the magnetic fields produced by electrical activity in the heart

Magnetocardiography (MCG) is a technique to measure the magnetic fields produced by electrical currents in the heart using extremely sensitive devices such as the superconducting quantum interference device (SQUID). If the magnetic field is measured using a multichannel device, a map of the magnetic field is obtained over the chest; from such a map, using mathematical algorithms that take into account the conductivity structure of the torso, it is possible to locate the source of the activity. For example, sources of abnormal rhythms or arrhythmia may be located using MCG.

The cryogenic current comparator (CCC) is used in the electrical precision measurements to compare electric currents with highest accuracy. This device exceeds the accuracy of other current comparators around several orders of magnitude and is used in electrical metrology for highly precise comparative measurements of electric resistances or for the amplification and measurement of extremely small electric currents.

Low field NMR spans a range of different nuclear magnetic resonance (NMR) modalities, going from NMR conducted in permanent magnets, supporting magnetic fields of a few T, all the way down to zero field NMR, where the Earth's field is carefully shielded such that magnetic fields of nT are achieved where nuclear spin precession is close to zero. In a broad sense, "Low-field NMR" is the branch of nuclear magnetic resonance that is NOT conducted in superconducting high-field magnets. Low field NMR also includes Earth's field NMR where simply the Earth's field is exploited to cause nuclear spin-precession which is detected. With magnetic fields on the order of μT and below magnetometers such as SQUIDs or atomic magnetometers are used as detectors. "Normal" high field NMR relies on the detection of spin-precession with inductive detection with a simple coil. However, this detection modality becomes less sensitive as the magnetic field and the associated frequencies decrease. Hence the push toward alternative detection methods at very low fields.

Magnetic marker monitoring is a method to monitor the passage of an orally applied drug (tablet, capsule, etc.) through the intestinal tract. The dosage form is enriched with a small amount (0.1 – 2 mg) of magnetite (Fe3O4), which then is magnetized by a high-energy magnetic field. After application the path of the dosage form can be monitored with special detectors, which contain Superconducting Quantum Interference Devices (SQUIDs). Due to the very low magnetic field of the iron oxide a specially shielded room is necessary in order to eliminate environmental magnetic interference. The method should be able to yield information about why tablets dissolve unequally before or after meals, which may be important for the bioavailability of drugs.

CryoEDM is a particle physics experiment aiming to measure the electric dipole moment (EDM) of the neutron to a precision of ~10−28ecm. The name is an abbreviation of cryogenic neutron EDM experiment. The previous name nEDM is also sometimes used, but should be avoided where there may be ambiguity. The project follows the Sussex/RAL/ILL nEDM experiment, which set the current best upper limit of 2.9×10−26ecm. To reach the improved sensitivity, cryoEDM uses a new source of ultracold neutrons (UCN), which works by scattering cold neutrons in superfluid helium.

John Peter Wikswo, Jr. is a biological physicist at Vanderbilt University. He was born in Lynchburg, Virginia, United States.

In physics, persistent current refers to a perpetual electric current, not requiring an external power source. Such a current is impossible in normal electrical devices, since all commonly-used conductors have a non-zero resistance, and this resistance would rapidly dissipate any such current as heat. However, in superconductors and some mesoscopic devices, persistent currents are possible and observed due to quantum effects. In resistive materials, persistent currents can appear in microscopic samples due to size effects. Persistent currents are widely used in the form of superconducting magnets.

The superconducting tunnel junction (STJ) — also known as a superconductor–insulator–superconductor tunnel junction (SIS) — is an electronic device consisting of two superconductors separated by a very thin layer of insulating material. Current passes through the junction via the process of quantum tunneling. The STJ is a type of Josephson junction, though not all the properties of the STJ are described by the Josephson effect.

Magnetomyography

Magnetomyography (MMG) is a technique for mapping muscle activity by recording magnetic fields produced by electrical currents occurring naturally in the muscles, using arrays of SQUIDs. It has a better capability than electromyography for detecting slow or direct currents. The magnitude of the MMG signal is in the scale of pico (10−12) to femto (10−15) Tesla (T). Miniaturizing MMG offers a prospect to modernize the bulky SQUID to wearable miniaturized magnetic sensors.

Geophysical signal analysis is concerned with the detection and a subsequent processing of signals. Any signal which is varying conveys valuable information. Hence to understand the information embedded in such signals, we need to 'detect' and 'extract data' from such quantities. Geophysical signals are of extreme importance to us as they are information bearing signals which carry data related to petroleum deposits beneath the surface and seismic data. Analysis of geophysical signals also offers us a qualitative insight into the possibility of occurrence of a natural calamity such as earthquakes or volcanic eruptions.

Superparamagnetic relaxometry (SPMR) is a technology combining the use of sensitive magnetic sensors and the superparamagnetic properties of magnetite nanoparticles (NP). For NP of a sufficiently small size, on the order of tens of nanometers (nm), the NP exhibit paramagnetic properties, i.e., they have little or no magnetic moment. When they are exposed to a small external magnetic field, on the order of a few millitesla (mT), the NP align with that field and exhibit ferromagnetic properties with large magnetic moments. Following removal of the magnetizing field, the NP slowly become thermalized, decaying with a distinct time constant from the ferromagnetic state back to the paramagnetic state. This time constant depends strongly upon the NP diameter and whether they are unbound or bound to an external surface such as a cell. Measurement of this decaying magnetic field is typically done by superconducting quantum interference detectors (SQUIDs). The magnitude of the field during the decay process determines the magnetic moment of the NPs in the source. A spatial contour map of the field distribution determines the location of the source in three dimensions as well as the magnetic moment.