Deborah Muoio

Last updated

Deborah Marie Muoio
Academic background
Alma mater University of Florida, University of Buffalo, University of North Carolina- Chapel Hill, Duke University
Thesis Fatty acid partitioning in muscle and liver : novel sites of regulation  (1999)

Deborah Marie Muoio is the George Barth Geller Distinguished Professor of Cardiovascular Disease at Duke University. She is known for her work on diabetes, obesity, and metabolism.

Contents

Education and career

Muoio grew up in the Buffalo area of New York. [1] She earned her Bachelor’s of Science degree at the University of Florida. After which she originally planned to pursue medical school but instead returned to western New York to University of Buffalo to complete her M.S. degree in nutrition in 1992. [1] She then went on to earn her Ph.D. in nutritional biochemistry at the University of North Carolina, Chapel Hill in 1999. [2] She completed postdoctoral fellowships at East Carolina and Duke Universities working in muscle physiology and metabolic disease. [3] Muoio joined Duke University in 2002, and she was promoted to professor of medicine in 2016. In 2021 she was named the George Barth Geller Distinguished Professor of Cardiovascular Disease at Duke University. [2]

Research

Muoio is known for her research in diabetes, metabolic regulation, mitochondrial energy, muscle physiology and exercise.Muoio's early research examined the lipids in skeletal muscles [4] and metabolic stress responses. [5] She has also worked on how the body's metabolism responds to overeating. [6] [7]

Selected publications

Related Research Articles

Insulin resistance (IR) is a pathological condition in which cells either fail to respond normally to the hormone insulin or downregulate insulin receptors in response to hyperinsulinemia.

<span class="mw-page-title-main">Leptin</span> Hormone that inhibits hunger

Leptin also obese protein is a protein hormone predominantly made by adipocytes. Its primary role is likely to regulate long-term energy balance.

<span class="mw-page-title-main">Carnitine</span> Amino acid active in mitochondria

Carnitine is a quaternary ammonium compound involved in metabolism in most mammals, plants, and some bacteria. In support of energy metabolism, carnitine transports long-chain fatty acids from the cytosol into mitochondria to be oxidized for free energy production, and also participates in removing products of metabolism from cells. Given its key metabolic roles, carnitine is concentrated in tissues like skeletal and cardiac muscle that metabolize fatty acids as an energy source. Generally individuals, including strict vegetarians, synthesize enough L-carnitine in vivo.

<span class="mw-page-title-main">Lipolysis</span> Metabolism involving breakdown of lipids

Lipolysis is the metabolic pathway through which lipid triglycerides are hydrolyzed into a glycerol and free fatty acids. It is used to mobilize stored energy during fasting or exercise, and usually occurs in fat adipocytes. The most important regulatory hormone in lipolysis is insulin; lipolysis can only occur when insulin action falls to low levels, as occurs during fasting. Other hormones that affect lipolysis include leptin, glucagon, epinephrine, norepinephrine, growth hormone, atrial natriuretic peptide, brain natriuretic peptide, and cortisol.

<span class="mw-page-title-main">Brown adipose tissue</span> Type of adipose tissue

Brown adipose tissue (BAT) or brown fat makes up the adipose organ together with white adipose tissue. Brown adipose tissue is found in almost all mammals.

<span class="mw-page-title-main">Adipose tissue</span> Loose connective tissue composed mostly by adipocytes

Adipose tissue is a loose connective tissue composed mostly of adipocytes. It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and a variety of immune cells such as adipose tissue macrophages. Its main role is to store energy in the form of lipids, although it also cushions and insulates the body.

<span class="mw-page-title-main">AMP-activated protein kinase</span> Class of enzymes

5' AMP-activated protein kinase or AMPK or 5' adenosine monophosphate-activated protein kinase is an enzyme that plays a role in cellular energy homeostasis, largely to activate glucose and fatty acid uptake and oxidation when cellular energy is low. It belongs to a highly conserved eukaryotic protein family and its orthologues are SNF1 in yeast, and SnRK1 in plants. It consists of three proteins (subunits) that together make a functional enzyme, conserved from yeast to humans. It is expressed in a number of tissues, including the liver, brain, and skeletal muscle. In response to binding AMP and ADP, the net effect of AMPK activation is stimulation of hepatic fatty acid oxidation, ketogenesis, stimulation of skeletal muscle fatty acid oxidation and glucose uptake, inhibition of cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibition of adipocyte lipogenesis, inhibition of adipocyte lipolysis, and modulation of insulin secretion by pancreatic β-cells.

<span class="mw-page-title-main">Adiponectin</span> Mammalian protein found in Homo sapiens

Adiponectin is a protein hormone and adipokine, which is involved in regulating glucose levels and fatty acid breakdown. In humans, it is encoded by the ADIPOQ gene and is produced primarily in adipose tissue, but also in muscle and even in the brain.

<span class="mw-page-title-main">Mitochondrial myopathy</span> Medical condition

Mitochondrial myopathies are types of myopathies associated with mitochondrial disease. Adenosine triphosphate (ATP), the chemical used to provide energy for the cell, cannot be produced sufficiently by oxidative phosphorylation when the mitochondrion is either damaged or missing necessary enzymes or transport proteins. With ATP production deficient in mitochondria, there is an over-reliance on anaerobic glycolysis which leads to lactic acidosis either at rest or exercise-induced.

<span class="mw-page-title-main">Cahill cycle</span> Metabolic pathway for transport of energy into and removal of ammonia from muscles

The Cahill cycle, also known as the alanine cycle or glucose-alanine cycle, is the series of reactions in which amino groups and carbons from muscle are transported to the liver. It is quite similar to the Cori cycle in the cycling of nutrients between skeletal muscle and the liver. When muscles degrade amino acids for energy needs, the resulting nitrogen is transaminated to pyruvate to form alanine. This is performed by the enzyme alanine transaminase (ALT), which converts L-glutamate and pyruvate into α-ketoglutarate and L-alanine. The resulting L-alanine is shuttled to the liver where the nitrogen enters the urea cycle and the pyruvate is used to make glucose.

<span class="mw-page-title-main">Stearoyl-CoA 9-desaturase</span> Class of enzymes

Stearoyl-CoA desaturase (Δ-9-desaturase) is an endoplasmic reticulum enzyme that catalyzes the rate-limiting step in the formation of monounsaturated fatty acids (MUFAs), specifically oleate and palmitoleate from stearoyl-CoA and palmitoyl-CoA. Oleate and palmitoleate are major components of membrane phospholipids, cholesterol esters and alkyl-diacylglycerol. In humans, the enzyme is present in two isoforms, encoded respectively by the SCD1 and SCD5 genes.

<span class="mw-page-title-main">UCP3</span> Protein-coding gene in the species Homo sapiens

Mitochondrial uncoupling protein 3 is a protein that in humans is encoded by the UCP3 gene. The gene is located in chromosome (11q13.4) with an exon count of 7 and is expressed on the inner mitochondrial membrane. Uncoupling proteins transfer anions from the inner mitochondrial membrane to the outer mitochondrial membrane, thereby separating oxidative phosphorylation from synthesis of ATP, and dissipating energy stored in the mitochondrial membrane potential as heat. Uncoupling proteins also reduce generation of reactive oxygen species.

<span class="mw-page-title-main">PDK4</span> Protein-coding gene in the species Homo sapiens

Pyruvate dehydrogenase lipoamide kinase isozyme 4, mitochondrial (PDK4) is an enzyme that in humans is encoded by the PDK4 gene. It codes for an isozyme of pyruvate dehydrogenase kinase.

<span class="mw-page-title-main">Brain mitochondrial carrier protein 1</span> Protein-coding gene in the species Homo sapiens

Brain mitochondrial carrier protein 1 is a protein that in humans is encoded by the SLC25A14 gene.

<span class="mw-page-title-main">3-Aminoisobutyric acid</span> Chemical compound

3-Aminoisobutyric acid is a product formed by the catabolism of thymine.

<span class="mw-page-title-main">Metabolic myopathy</span> Type of myopathies

Metabolic myopathies are myopathies that result from defects in biochemical metabolism that primarily affect muscle. They are generally genetic defects that interfere with muscle's ability to create energy, causing a low ATP reservoir within the muscle cell.

Pyruvate cycling commonly refers to an intracellular loop of spatial movements and chemical transformations involving pyruvate. Spatial movements occur between mitochondria and cytosol and chemical transformations create various Krebs cycle intermediates. In all variants, pyruvate is imported into the mitochondrion for processing through part of the Krebs cycle. In addition to pyruvate, alpha-ketoglutarate may also be imported. At various points, the intermediate product is exported to the cytosol for additional transformations and then re-imported. Three specific pyruvate cycles are generally considered, each named for the principal molecule exported from the mitochondrion: malate, citrate, and isocitrate. Other variants may exist, such as dissipative or "futile" pyruvate cycles.

Lipid droplets, also referred to as lipid bodies, oil bodies or adiposomes, are lipid-rich cellular organelles that regulate the storage and hydrolysis of neutral lipids and are found largely in the adipose tissue. They also serve as a reservoir for cholesterol and acyl-glycerols for membrane formation and maintenance. Lipid droplets are found in all eukaryotic organisms and store a large portion of lipids in mammalian adipocytes. Initially, these lipid droplets were considered to merely serve as fat depots, but since the discovery in the 1990s of proteins in the lipid droplet coat that regulate lipid droplet dynamics and lipid metabolism, lipid droplets are seen as highly dynamic organelles that play a very important role in the regulation of intracellular lipid storage and lipid metabolism. The role of lipid droplets outside of lipid and cholesterol storage has recently begun to be elucidated and includes a close association to inflammatory responses through the synthesis and metabolism of eicosanoids and to metabolic disorders such as obesity, cancer, and atherosclerosis. In non-adipocytes, lipid droplets are known to play a role in protection from lipotoxicity by storage of fatty acids in the form of neutral triacylglycerol, which consists of three fatty acids bound to glycerol. Alternatively, fatty acids can be converted to lipid intermediates like diacylglycerol (DAG), ceramides and fatty acyl-CoAs. These lipid intermediates can impair insulin signaling, which is referred to as lipid-induced insulin resistance and lipotoxicity. Lipid droplets also serve as platforms for protein binding and degradation. Finally, lipid droplets are known to be exploited by pathogens such as the hepatitis C virus, the dengue virus and Chlamydia trachomatis among others.

<span class="mw-page-title-main">Lipotoxicity</span> Metabolic syndrome

Lipotoxicity is a metabolic syndrome that results from the accumulation of lipid intermediates in non-adipose tissue, leading to cellular dysfunction and death. The tissues normally affected include the kidneys, liver, heart and skeletal muscle. Lipotoxicity is believed to have a role in heart failure, obesity, and diabetes, and is estimated to affect approximately 25% of the adult American population.

Sleep is important in regulating metabolism. Mammalian sleep can be sub-divided into two distinct phases - REM and non-REM (NREM) sleep. In humans and cats, NREM sleep has four stages, where the third and fourth stages are considered slow-wave sleep (SWS). SWS is considered deep sleep, when metabolism is least active.

References

  1. 1 2 "Our alumni: Deborah M. Muoio". publichealth.buffalo.edu. Retrieved 10 October 2023.
  2. 1 2 "Deborah Marie Muoio | Scholars@Duke profile". scholars.duke.edu. Retrieved 10 October 2023.
  3. "Deborah M Muoio Phd | Diabetes Research Centers". diabetescenters.org. Retrieved 10 October 2023.
  4. Muoio, Deborah M; Dohn, G Lynis; Fiedorek, Frederick T; Tapscott, Edward B; Coleman, Rosalind A (1 August 1997). "Leptin Directly Alters Lipid Partitioning in Skeletal Muscle". Diabetes. 46 (8): 1360–1363. doi: 10.2337/diab.46.8.1360 . ISSN   0012-1797. PMID   9231663.
  5. Muoio, Deborah M.; Seefeld, Kimberly; Witters, Lee A.; Coleman, Rosalind A. (15 March 1999). "AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target". Biochemical Journal. 338 (3): 783–791. doi:10.1042/bj3380783. ISSN   0264-6021. PMC   1220117 . PMID   10051453.
  6. Muoio, Deborah M. (2014). "Metabolic Inflexibility: When Mitochondrial Indecision Leads to Metabolic Gridlock". Cell. 159 (6): 1253–1262. doi:10.1016/j.cell.2014.11.034. ISSN   0092-8674. PMC   4765362 . PMID   25480291.
  7. Faherty, Sheena. "How Overeating May Contribute to a Metabolic "Traffic Jam"". Scientific American Blog Network. Retrieved 10 October 2023.