DeepCwind Consortium

Last updated
DeepCwind Consortium logo DeepCwindLogoColor copy.svg
DeepCwind Consortium logo

The DeepCwind Consortium was a national consortium of universities, nonprofits, utilities, and industry leaders. The mission of the consortium was to establish the State of Maine as a national leader in floating offshore wind technology. Much of the consortium's work and resulting research was funded by the U.S. Department of Energy, the National Science Foundations, and others. [1]

Contents

The efforts of the DeepCwind Consortium culminated in the University of Maine patent-pending VolturnUS, a floating concrete hull technology can support wind turbines in water depths of 45 meters or more, and has the potential to significantly reduce the cost of offshore wind. [2]

Overview

The DeepCwind Consortium was initially funded in 2009 as part of the American Recovery and Reinvestment Act (ARRA) through the U.S. Department of Energy. The University of Maine received $7.1 million to found the consortium and design and deploy floating offshore turbine prototypes. As part of this funding, the research plan included: "optimization of designs for floating platforms by evaluating options for using more durable, lighter, hybrid composite materials, manufacturability, and deployment logistics." [3]

Floating deepwater wind farms placed ten or more nautical miles (nmi) offshore can play a critical role in reaching the Department of Energy's 20% windpower goal by 2030. Deepwater offshore wind is the dominant U.S. ocean energy resource, representing a potential of nearly 3,100 TW-h/year. It also:

With these qualities in mind, Maine planned to construct a 5 GW, $20 billion network of floating offshore wind farms to contribute to the northeast U.S. renewable energy needs. [4] Maine has the deepest waters near its shores, approximately 200 ft deep at 3 nmi, and 89% of Maine's 156 GW offshore wind resource is in deep waters. The state also offers extensive maritime industry infrastructure and proximity to one of the largest energy markets in the country.

Research Outcomes

The DeepCwind Consortium published the Maine Offshore Wind Report in February 2011. The report "examines economics and policy, electrical grid integration, wind and wave, bathymetric, soil, and environmental research. It also includes summaries of assembly and construction sites, critical issues for project development and permitting, and an analysis of the implications of the Jones Act." [5]

The VolturnUS was launched from Cianbro's Brewer, ME facility on May 31, 2013. Pictured left to right: University of Maine System Chancellor James Page, Maine Maritime Academy President William Brennan, Patrick Woodcock, Congressman Michael Michaud, Senator Susan Collins, Peter Vigue, Jose Zayas, Program Manager of the U.S. Department of Energy's Wind and Water Power Program, University of Maine President Susan Hunter, Senator Angus King, and Dr. Habib Dagher, Director of the UMaine Composites Center. VolturnUS Launch Dignitaries.jpg
The VolturnUS was launched from Cianbro's Brewer, ME facility on May 31, 2013. Pictured left to right: University of Maine System Chancellor James Page, Maine Maritime Academy President William Brennan, Patrick Woodcock, Congressman Michael Michaud, Senator Susan Collins, Peter Vigue, Jose Zayas, Program Manager of the U.S. Department of Energy's Wind and Water Power Program, University of Maine President Susan Hunter, Senator Angus King, and Dr. Habib Dagher, Director of the UMaine Composites Center.

In June 2013, the consortium deployed the 20 kW [6] VolturnUS 1:8, a 65-foot-tall floating turbine prototype that is 1:8th the scale of a 6-megawatt (MW), 450-foot rotor diameter design. VolturnUS 1:8 was the first grid-connected offshore wind turbine in the Americas.

In June 2016, the UMaine-led New England Aqua Ventus I project has just won top tier status from the US Department of Energy (DOE) Advanced Technology Demonstration Program for Offshore Wind. New England Aqua Ventus I is a two 6 MW turbine (12 MW) floating offshore wind pilot project 14 miles off Maine's coast, developed by Maine Aqua Ventus, GP, LLC. The objective of the pilot is to demonstrate the technology at full scale, allowing floating farms to be built out-of-sight across the US and the world in the 2020s, bringing lower-cost, clean renewable energy to coastal population centers. [7]

Partnering Organizations and Original Research Initiatives

The University of Maine-led consortium includes universities, nonprofits, and utilities; a wide range of industry leaders in offshore design, offshore construction, and marine structures manufacturing; firms with expertise in wind project siting, environmental analysis, environmental law, composites materials to assist in corrosion-resistant material design and selection, and energy investment; and industry organizations to assist with education and tech transfer activities.

Task 1: Micrositing, Geophysical Investigations, and Geotechnical Engineering

The primary objective of micrositing, geophysical investigations, and geotechnical engineering was the characterization of the seafloor environment for turbine anchoring at the University of Maine Deepwater Offshore Wind Test Site in the Gulf of Maine. Activities coordinated geologic and geotechnical engineering information with the metocean forces assessed in the Offshore Turbine Testing, Monitoring, and Reliability task and assisted in design of efficient moorings and anchors for the floating offshore wind turbines under the Floating Turbines Design and Lab Testing task. An additional objective of this task was to provide site location documentation and address safety and navigation at the site once the turbines and moorings are installed.

Partners: University of Maine Department of Civil and Environmental Engineering, James W. Sewall Company, Maine Maritime Academy, University of Western Australia Centre for Offshore Foundation Research

Task 2: Study of Environmental/Ecological Impacts

Maine Public Law 270, which allowed the establishment of the University of Maine Deepwater Offshore Wind Test Site, required that the following state and federal agencies be consulted concerning environmental monitoring and planning of the test site:

These agencies required plans for siting, navigation, project removal, remedial action, and environmental/ecological monitoring. They also required reports and updates on site activities.

There were to be wildlife-specific studies for:

As part of the environmental/ecological monitoring plan that was part of the test site permit application, a review of the potential threats to marine life was considered and mitigation measures were designed. Potential areas of concern addressed in this report included the following:

All micrositing, environmental/ecological monitoring, and permitting activities were conducted from the start of the project in 2010 until the end of the project in 2012.

Partners: University of Maine School of Marine Sciences, University of Maine School of Biology and Ecology, Island Institute, Gulf of Maine Research Institute, New Jersey Audubon Society, Pacific Northwest National Laboratory

Task 3: Permitting and Policy

Under the recently enacted Maine Public Law 2009, Chapter 270 (LD 1465), the University of Maine Deepwater Offshore Wind Test Site is located near Monhegan Island, an area selected by the state. [8] This site was analyzed in detail through the state's site selection process.

With Maine's designation of the test site, the Permitting and Policy team secured specific permits for the proposed project from all applicable local, state, and federal permitting authorities. In conformance with the application requirements, to obtain a General Permit under LD 1465, the Permitting and Policy team, in conjunction with the Micrositing and Ecological Monitoring teams, submitted a report to the required state and federal agencies describing:

The team worked to develop these plans in consultation with federal, state, and local agencies, as well as stakeholders.

Partners: James W. Sewall Company, Kleinschmidt, HDR/DTA

Task 4: Floating Turbine Design, Material Selection, and Lab Testing

The primary objectives of the Floating Turbine Design task was to:

Partners: Advanced Structures and Composites Center, Maine Maritime Academy, Technip USA, National Renewable Energy Laboratory, Sandia National Labs, Ashland, Inc., Kenway Corporation, Harbor Technologies, PPG Industries, Owens Corning, Zoltek, Polystrand, Inc.

Task 5: Offshore Turbine Testing, Monitoring, and Reliability

The Physical Oceanography Group (PhOG) at the University of Maine deployed and operated an oceanographic data buoy with real-time telemetry capabilities in the University of Maine Deepwater Offshore Wind Test Site offshore Monhegan Island. The ocean data buoy was deployed prior to the tank testing and remained in operation throughout the project period in order to monitor oceanographic, meteorological, and general environmental conditions. Monitoring emphasis was on wind speed and direction, visibility, directional waves, and water-column currents.

Partners: University of Maine Physical Oceanography Group, University of Maine School of Marine Sciences

Task 6: Education and Outreach

The University of Maine, Maine Maritime Academy, and Northern Maine Community College developed several degree programs to create a trained workforce for the State of Maine. To ensure the community at large understands our research and development, the DeepCwind Consortium found numerous opportunities to share and discuss goals, activity plans, and the results of research. The consortium held public meetings to discuss the site selection for the University of Maine Deepwater Offshore Wind Test Site, presented at conferences within the state and across the country, and even taught an interactive wind-wave tank testing activity to over 500 K-12 students across Maine. These and other activities continued through the duration of the project.

Partners: Advanced Structures and Composites Center, University of Maine College of Engineering, University of Maine Department of Industrial Cooperation, Maine Maritime Academy, Northern Maine Community College, American Composites Manufacturers Association, Maine Composites Alliance, Maine Wind Industry Initiative

Task 8: Fabrication and Deployment UMaine and its subcontractors led the fabrication and deployment of the approximately 1/8 scale floating wind turbine platform. The deployment study sought to identify key deployment and installation factors. The performance data gathered from the 1/8 scale platform was used to further validate platform numerical models developed by NREL and others.

Partners: Advanced Structures and Composites Center, Cianbro Corporation, General Dynamics Bath Iron Works, Maine Maritime Academy, Emera Maine, Central Maine Power Company, Technip USA, Reed and Reed, SGC

See also

Related Research Articles

<span class="mw-page-title-main">University of Maine</span> Public research university in Orono, Maine, US

The University of Maine (UMaine) is a public land-grant research university in Orono, Maine. It was established in 1865 as the land-grant college of Maine and is the flagship university of the University of Maine System. It is classified among "R1: Doctoral Universities – Very high research activity".

Subsea technology involves fully submerged ocean equipment, operations, or applications, especially when some distance offshore, in deep ocean waters, or on the seabed. The term subsea is frequently used in connection with oceanography, marine or ocean engineering, ocean exploration, remotely operated vehicle (ROVs) autonomous underwater vehicles (AUVs), submarine communications or power cables, seafloor mineral mining, oil and gas, and offshore wind power.

<span class="mw-page-title-main">Wind power in the United States</span>

Wind power is a branch of the energy industry that has expanded quickly in the United States over the last several years. From January through December 2022, 434.8 terawatt-hours were generated by wind power, or 10.25% of electricity in the United States. The average wind turbine generates enough electricity in 46 minutes to power the average American home for one month. In 2019, wind power surpassed hydroelectric power as the largest renewable energy source in the U.S.

<span class="mw-page-title-main">Wind power in California</span> Electricity from large wind farms

Wind power in California had initiative and early development during Governor Jerry Brown's first two terms in the late 1970s and early 1980s. The state's wind power capacity has grown by nearly 350% since 2001, when it was less than 1,700 MW. In 2016, wind energy supplied about 6.9% of California's total electricity needs, or enough to power more than 1.3 million households. Most of California's wind generation is found in the Tehachapi area of Kern County, California, with some large projects in Solano, Contra Costa and Riverside counties as well. California is among the states with the largest amount of installed wind power capacity. In recent years, California has lagged behind other states when it comes to the installation of wind power. It was ranked 4th overall for wind power electrical generation at the end of 2016 behind Texas, Iowa, and Oklahoma. As of 2019, California had 5,973 megawatts (MW) of wind power generating capacity installed.

<span class="mw-page-title-main">European Marine Energy Centre</span>

The European Marine Energy Centre (EMEC) Ltd is a UKAS accredited test and research center focused on wave and tidal power development, based in the Orkney Islands, UK. The centre provides developers with the opportunity to test full-scale grid-connected prototype devices in wave and tidal conditions.

<span class="mw-page-title-main">Floating wind turbine</span> Type of wind turbine

A floating wind turbine is an offshore wind turbine mounted on a floating structure that allows the turbine to generate electricity in water depths where fixed-foundation turbines are not feasible. Floating wind farms have the potential to significantly increase the sea area available for offshore wind farms, especially in countries with limited shallow waters, such as Spain, Portugal, Japan, France and the United States' West Coast. Locating wind farms further offshore can also reduce visual pollution, provide better accommodation for fishing and shipping lanes, and reach stronger and more consistent winds.

There are a number of wind power projects in the state of Maine, totaling more than 900 megawatts (MW) in capacity. In 2020 they were responsible for 24% of in-state electricity production. In 2019, Maine had more wind capacity than the other five New England states combined, at 923 MW.

New York has 2,192 MW of installed wind power capacity as of 2022. Most of New York's wind power is located in upstate New York as onshore wind farms. New York has set a goal of developing 9,000 MW of offshore installed wind power capacity by 2035 that will power an estimated 6 million homes. As of October 2022, New York has five offshore wind farms in development with approximately 4,300 MW installed capacity.

Ørsted U.S. Offshore Wind is an offshore wind energy development group that is affiliated with Ørsted, a Danish firm. It is joint headquartered in Boston, Massachusetts and Providence, Rhode Island. As of 2019, it was involved in some of the largest offshore wind farm projects in the United States.

<span class="mw-page-title-main">Offshore wind power</span> Wind turbines in marine locations for electricity production

Offshore wind power or offshore wind energy is the generation of electricity through wind farms in bodies of water, usually at sea. There are higher wind speeds offshore than on land, so offshore farms generate more electricity per amount of capacity installed. Offshore wind farms are also less controversial than those on land, as they have less impact on people and the landscape.

<span class="mw-page-title-main">Alpha Ventus Offshore Wind Farm</span>

Alpha Ventus Offshore Wind Park is a German offshore wind farm. This is Germany’s first offshore wind farm. It is situated in the North Sea, 45 kilometres (28 mi) north of the island of Borkum.

<span class="mw-page-title-main">Wind power in Massachusetts</span> Electricity from wind in one U.S. state

The U.S. state of Massachusetts has vast wind energy resources offshore, as well as significant resources onshore. The 2016 update to the states's Clean Energy and Climate Plan had a goal of reducing 1990 baseline greenhouse gas emissions levels by 25% by 2020. Current goals include installing 3,500 megawatts (MW) of offshore wind power in the state by 2035. However, as of Q4 2021 the state had only 120 MW of wind powered electricity generating capacity, responsible for generating 0.9% of in-state electricity production. The state has awarded contracts to two offshore projects, the 800 MW Vineyard Wind project and 804 MW Mayflower Wind project. Construction began on the Vineyard Wind 1 project on November 18, 2021, after a long fight for approval. Commonwealth Wind was selected for development in 2021, but the developer has attempted to cancel the project due to increased costs. There are eight projects planned for off the southern coast of Massachusetts, though some will deliver power to Rhode Island, Connecticut, and New York.

<span class="mw-page-title-main">Tidal stream generator</span> Type of tidal power generation technology

A tidal stream generator, often referred to as a tidal energy converter (TEC), is a machine that extracts energy from moving masses of water, in particular tides, although the term is often used in reference to machines designed to extract energy from run of river or tidal estuarine sites. Certain types of these machines function very much like underwater wind turbines, and are thus often referred to as tidal turbines. They were first conceived in the 1970s during the oil crisis.

The Oceanic Platform of the Canary Islands (PLOCAN) is a singular scientific and technological infrastructure (ICTS) aimed to accelerate the development of knowledge and technologies for the responsible and sustainable use of the ocean, in line with the United Nations Sustainable Development Goals and strategy of Blue Growth Strategy established by the European Union. It has been partially co-funded by the European Regional Development Fund (ERDF) under the ERDF Operational Programme for the Canary Islands 2007-2013 within Axis 1 "Development of the Knowledge Economy", priority theme 02, with a co-financing rate of 85%. PLOCAN is financed and managed by a consortium comprising 50% contributions from the Government of the Canary Islands and the Spanish National Government.

<span class="mw-page-title-main">Block Island Wind Farm</span>

Block Island Wind Farm is the first commercial offshore wind farm in the United States, located 3.8 mi (6.1 km) from Block Island, Rhode Island in the Atlantic Ocean. The five-turbine, 30 MW project was developed by Deepwater Wind, now known as Ørsted US Offshore Wind.

Wind power is a form of renewable energy in South Korea with the goal of reducing greenhouse gas (GHG) and particulate matter (PM) emissions caused by coal based power. After two oil crises dating back to the 1970s, the South Korean government needed to transition to renewable energy, which encouraged their first renewable energy law in 1987.

<span class="mw-page-title-main">UMaine Advanced Structures and Composites Center</span>

The Advanced Structures and Composites Center is an independent research unit at the University of Maine that provides research, education, and economic development encompassing material sciences, manufacturing and engineering of composites and structures.

<span class="mw-page-title-main">VolturnUS</span>

The VolturnUS is a floating concrete structure that supports a wind turbine, designed by University of Maine Advanced Structures and Composites Center and deployed by DeepCwind Consortium in 2013. The VolturnUS can support wind turbines in water depths of 150 ft (46 m) or more. The DeepCwind Consortium and its partners deployed a 1:8 scale VolturnUS in 2013. Efforts are now underway by Maine Aqua Ventus 1, GP, LLC, to deploy to full-scale VolturnUS structures off the coast of Monhegan Island, Maine, in the UMaine Deepwater Offshore Wind Test Site. This demonstration project, known as New England Aqua Ventus I, is planned to deploy two 6 MW wind turbines by 2020.

The University of Maine (UMaine) Deepwater Offshore Wind Test Site, located nearly 3 miles south west of Monhegan Island, Maine is available for use by commercial and non-commercial entities in partnership with the University of Maine, or the University of Maine itself, to research and develop ocean energy devices, such as floating wind turbines or wave energy converters.

<span class="mw-page-title-main">Offshore wind power in the United States</span>

Offshore wind power is in the early stages of development in the United States. In 2016, the United States Department of Energy estimated that the country has a gross resource potential of 10,800GW of offshore wind capacity, with a "technical" resource potential of 2,058GW. Offshore wind projects are under development in wind-rich areas of the East Coast, Great Lakes, and Pacific coast. The first commercial offshore wind farm, Block Island Wind Farm, began operation in 2016. As of 2017, about 30 projects totaling 24 gigawatts (GW) of potential installed capacity were being planned.

References

  1. "DeepCwind Consortium". UMaine Advanced Structures and Composites Center. University of Maine. Retrieved 5 July 2016.[ permanent dead link ]
  2. "New England Aqua Ventus I Selected by the DOE for up to $39.9 Million in Additional Funding". UMaine Advanced Structures and Composites Center. Archived from the original on 19 July 2016. Retrieved 5 July 2016.
  3. Department of Energy Recovery Act State Memos: Maine (PDF). U.S. Department of Energy. 1 June 2010. p. 5. Retrieved 5 July 2016.
  4. Dagher, Habib (September 2012). Maine Deepwater Offshore Wind Report (PDF). Orono, ME: University of Maine. p. 567. Archived from the original (PDF) on 6 October 2015. Retrieved 5 July 2016.
  5. "Offshore Wind Report". UMaine Advanced Structures and Composites Center. University of Maine. Retrieved 5 July 2016.
  6. "DeepCwind Consortium - VolturnUS - Dyces Head Test Site". 4C Offshore. Retrieved 24 November 2016.
  7. "New England Aqua Ventus I Selected by the DOE for up to $39.9 Million in Additional Funding". UMaine Advanced Structures and Composites Center. University of Maine. Archived from the original on 19 July 2016. Retrieved 5 July 2016.
  8. Miller, Kevin (4 June 2009). "Baldacci signs bill for ocean energy". Bangor Daily News. Retrieved 5 July 2016.