Dense non-aqueous phase liquid

Last updated

A dense non-aqueous phase liquid or DNAPL is a denser-than-water NAPL, i.e. a liquid that is both denser than water and is immiscible in or does not dissolve in water. [1]

Contents

The term DNAPL is used primarily by environmental engineers and hydrogeologists to describe contaminants in groundwater, surface water and sediments. DNAPLs tends to sink below the water table when spilled in significant quantities and only stop when they reach impermeable layers such as clay layers or low porosity bedrock. Their penetration into an aquifer makes them difficult to locate and remediate.

Examples of materials that are DNAPLs when spilled include:

When spilled into the environment, chlorinated solvents are frequently present as DNAPL and the DNAPL can provide a long term secondary source of the chlorinated solvent to dissolved groundwater plumes. Chlorinated solvents are typically immiscible in water, having low solubility in water by definition, yet still have a solubility above the concentrations allowed by drinking water protections. Therefore, DNAPL which is a chlorinated solvent can act as an ongoing pathway for constituents to dissolve into groundwater. Common use of chlorinated solvents in manufacturing operations began during World War II, with the rate of usage for most solvents increasing into the 1970s. By the early 1980s, chemical analyses became available that documented widespread contamination of groundwater with chlorinated solvents. [2] Since that time, a considerable effort has been extended to improve our ability to locate [3] [4] and remediate [5] DNAPL present as chlorinated solvents.

DNAPLs that are not viscous, such as chlorinated solvents, tend to sink into aquifer materials below the water table and become much more difficult to locate and remediate than non aqueous phase liquids that are lighter than water (LNAPLs) which tend to float at the water table when spilled into natural soils. The United States Environmental Protection Agency (USEPA) has focused considerable attention on the remediation of DNAPL which can be costly. Removal or in situ destruction of DNAPLs eliminates the potential exposure to the compounds in the environment and can be an effective method for remediation; however, at some DNAPL sites remediation of DNAPL may not be practicable, and containment may be the only viable remedial action. [6] [7] The USEPA has a program to address sites where DNAPL removal is not practicable for remediation projects under CERCLA under the Resource Conservation and Recovery Act [8] Dense nonaqueous phase liquids (DNAPLs), have low solubility and are with viscosity markedly lower and density higher than water-asphalt, heavy oils, lubricants and also chlorinated solvents-penetrate the full depth of the aquifer and accumulate on its bottom. [9] "DNAPL movement follows the slope of the impermeable strata underlying the aquifer and can move in the opposite direction to the groundwater gradient." [10]

Groundwater remediation technologies have been developed that can address DNAPL in some settings. Excavation is not always practicable due to the depths of the DNAPL, the dispersed nature of the residual DNAPL, mobility caused during excavation, and complexities with near-by structures. Technologies for treatment include the following

Most DNAPLs remain denser than water after they are released into the environment (e.g. spilled trichloroethene does not become lighter than water, it will remain denser than water). However, when the DNAPL is a complex mixture of chemicals, the density of the mixture can change over time as the mixture interacts with the natural environment. As an example, a mixture of trichloroethene and cutting oil may be released and originally be denser than water—a DNAPL. As the mixture of trichloroethene and oil is leached by groundwater, the trichloroethene may preferentially leach out of the oil and the mixture may become less dense than water and become buoyant (e.g. the liquid may become an LNAPL). Similarly changes can be seen at some coal gasification plants or manufactured gas plants where the tar mixtures can be denser than water, be neutrally buoyant or be less dense than water and the densities can change with time. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Environmental remediation</span> Removal of pollution from soil, groundwater etc.

Environmental remediation is the cleanup of hazardous substances dealing with the removal, treatment and containment of pollution or contaminants from environmental media such as soil, groundwater, sediment. Remediation may be required by regulations before development of land revitalization projects. Developers who agree to voluntary cleanup may be offered incentives under state or municipal programs like New York State's Brownfield Cleanup Program. If remediation is done by removal the waste materials are simply transported off-site for disposal at another location. The waste material can also be contained by physical barriers like slurry walls. The use of slurry walls is well-established in the construction industry. The application of (low) pressure grouting, used to mitigate soil liquefaction risks in San Francisco and other earthquake zones, has achieved mixed results in field tests to create barriers, and site-specific results depend upon many variable conditions that can greatly impact outcomes.

Aqueous biphasic systems (ABS) or aqueous two-phase systems (ATPS) are clean alternatives for traditional organic-water solvent extraction systems.

Organohalide respiration (OHR) (previously named halorespiration or dehalorespiration) is the use of halogenated compounds as terminal electron acceptors in anaerobic respiration. Organohalide respiration can play a part in microbial biodegradation. The most common substrates are chlorinated aliphatics (PCE, TCE, chloroform) and chlorinated phenols. Organohalide-respiring bacteria are highly diverse. This trait is found in some Campylobacterota, Thermodesulfobacteriota, Chloroflexota (green nonsulfur bacteria), low G+C gram positive Clostridia, and ultramicrobacteria.

A multiphasic liquid is a mixture consisting of more than two immiscible liquid phases. Biphasic mixtures consisting of two immiscible phases are very common and usually consist of an organic solvent and an aqueous phase.

<span class="mw-page-title-main">Sodium permanganate</span> Chemical compound

Sodium permanganate is the inorganic compound with the formula NaMnO4. It is closely related to the more commonly encountered potassium permanganate, but it is generally less desirable, because it is more expensive to produce. It is mainly available as the monohydrate. This salt absorbs water from the atmosphere and has a low melting point. Being about 15 times more soluble than KMnO4, sodium permanganate finds some applications where very high concentrations of MnO4 are sought.

Soil vapor extraction (SVE) is a physical treatment process for in situ remediation of volatile contaminants in vadose zone (unsaturated) soils. SVE is based on mass transfer of contaminant from the solid (sorbed) and liquid phases into the gas phase, with subsequent collection of the gas phase contamination at extraction wells. Extracted contaminant mass in the gas phase is treated in aboveground systems. In essence, SVE is the vadose zone equivalent of the pump-and-treat technology for groundwater remediation. SVE is particularly amenable to contaminants with higher Henry’s Law constants, including various chlorinated solvents and hydrocarbons. SVE is a well-demonstrated, mature remediation technology and has been identified by the U.S. Environmental Protection Agency (EPA) as presumptive remedy.

<span class="mw-page-title-main">Iron nanoparticle</span>

Nanoscale iron particles are sub-micrometer particles of iron metal. They are highly reactive because of their large surface area. In the presence of oxygen and water, they rapidly oxidize to form free iron ions. They are widely used in medical and laboratory applications and have also been studied for remediation of industrial sites contaminated with chlorinated organic compounds.

Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 per cent and 40 per cent of the world's drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.

A light non-aqueous phase liquid (LNAPL) is a groundwater contaminant that is not soluble in water and has a lower density than water, in contrast to a DNAPL which has a higher density than water. Once a LNAPL pollution infiltrates the ground, it will stop at the depth of the water table because of its positive buoyancy. Efforts to locate and remove LNAPLs are relatively less expensive and easier than for DNAPLs because LNAPLs float on top of the water table.

LNAPL transmissivity is the discharge of light non-aqueous phase liquid (LNAPL) through a unit width of aquifer for a unit gradient.

In situ chemical oxidation (ISCO), a form of advanced oxidation process, is an environmental remediation technique used for soil and/or groundwater remediation to lower the concentrations of targeted environmental contaminants to acceptable levels. ISCO is accomplished by introducing strong chemical oxidizers into the contaminated medium to destroy chemical contaminants in place. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation. The in situ in ISCO is just Latin for "in place", signifying that ISCO is a chemical oxidation reaction that occurs at the site of the contamination.

A permeable reactive barrier (PRB), also referred to as a permeable reactive treatment zone (PRTZ), is a developing technology that has been recognized as being a cost-effective technology for in situ groundwater remediation. PRBs are barriers which allow some—but not all—materials to pass through. One definition for PRBs is an in situ treatment zone that passively captures a plume of contaminants and removes or breaks down the contaminants, releasing uncontaminated water. The primary removal methods include: (1) sorption and precipitation, (2) chemical reaction, and (3) reactions involving biological mechanisms.

In situ chemical reduction (ISCR) is a type of environmental remediation technique used for soil and/or groundwater remediation to reduce the concentrations of targeted environmental contaminants to acceptable levels. It is the mirror process of In Situ Chemical Oxidation (ISCO). ISCR is usually applied in the environment by injecting chemically reductive additives in liquid form into the contaminated area or placing a solid medium of chemical reductants in the path of a contaminant plume. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation.

<span class="mw-page-title-main">1,2,3-Trichloropropane</span> Chemical compound

1,2,3-Trichloropropane (TCP) is an organic compound with the formula CHCl(CH2Cl)2. It is a colorless liquid that is used as a solvent and in other specialty applications.

<span class="mw-page-title-main">Groundwater pollution</span> Ground released seep into groundwater

Groundwater pollution occurs when pollutants are released to the ground and make their way into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant, or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution. Groundwater pollution can occur from on-site sanitation systems, landfill leachate, effluent from wastewater treatment plants, leaking sewers, petrol filling stations, hydraulic fracturing (fracking) or from over application of fertilizers in agriculture. Pollution can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease.

The water associated fraction (WAF), sometimes termed the water-soluble fraction (W.S.F.), is the solution of low molecular mass hydrocarbons naturally released from petroleum hydrocarbon mixtures in contact with water. Although generally regarded as hydrophobic, many petroleum hydrocarbons are soluble in water to a limited extent. This combination often also contains less soluble, higher molecular mass components, and more soluble products of chemical and biological degradation.

<span class="mw-page-title-main">Non-aqueous phase liquid</span> Liquid solution contaminants that do not dissolve in or easily mix with water

Non-aqueous phase liquids, or NAPLs, are organic liquid contaminants characterized by their relative immiscibility with water. Common examples of NAPLs are petroleum products, coal tars, chlorinated solvents, and pesticides. Strategies employed for their removal from the subsurface environment have expanded since the late-20th century.

Aquifer thermal energy storage (ATES) is the storage and recovery of thermal energy in subsurface aquifers. ATES can heat and cool buildings. Storage and recovery is achieved by extraction and injection of groundwater using wells. Systems commonly operate in seasonal modes. Groundwater that is extracted in summer performs cooling by transferring heat from the building to the water by means of a heat exchanger. The heated groundwater is reinjected into the aquifer, which stores the heated water. In wintertime, the flow is reversed — heated groundwater is extracted.

<span class="mw-page-title-main">Cosolvent</span>

In chemistry, cosolvents are substances added to a primary solvent in small amounts to increase the solubility of a poorly-soluble compound. Their use is most prevalent in chemical and biological research relating to pharmaceuticals and food science, where alcohols are frequently used as cosolvents in water to dissolve hydrophobic molecules during extraction, screening, and formulation. Cosolvents find applications also in environmental chemistry and are known as effective countermeasures against pollutant non-aqueous phase liquids, as well as in the production of functional energy materials and synthesis of biodiesel.

Beth L. Parker is a hydrogeologist and professor at the University of Guelph who has made exceptional contributions to the science and practice of Contaminant Hydrogeology and the protection of groundwater from contamination, that have been adopted internationally to protect water supplies in Guelph and many other communities.

References

  1. , USGS
  2. Pankow, James F., Stan Feenstra, John A. Cherry and M. Cathryn Ryan, "Dense Chlorinated Solvents in Groundwater: Background and History of the Problem" in Dense Chlorinated Solvents and Other DNAPLs in Groundwater ed. James Pankow & John Cherry, 1996.
  3. Dense Chlorinated Solvents and Other DNAPLs in Groundwater ed. James Pankow & John Cherry, 1996.
  4. Cohen R.M, and J.W. Mercer. 1993. DNAPL Site Evaluation. CRC Press, Boca Raton, FL. http://www.clu-in.org/download/contaminantfocus/dnapl/600r93022.pdf
  5. "CLU-IN | Contaminants > Dense Nonaqueous Phase Liquids (DNAPLs) > Overview".
  6. USEPA, 2003. "The DNAPL Remediation Challenge: Is There a Case for Source Depletion?" EPA/600/R-03/143. http://www.clu-in.org/download/remed/600R03143.pdf
  7. 1 2 [ITRC, 2002. "DNAPL Source Reduction: Facing the Challenge" http://www.itrcweb.org/Documents/DNAPLs-2.pdf]
  8. U.S. EPA, 1993. "Guidance for Evaluating the Technical Impracticability of Groundwater Restoration" Directive 9234.2-25
  9. Manuel Ramâon Llamas; Emilio Custodio, eds. (2003). Intensive Use of Groundwater: Challenges and Opportunities. CRC Press. p. 478.
  10. Vrba, Jaroslav; Adams, Brian, eds. (2008). Groundwater Early Warning Monitoring Strategy A Methodological Guide (PDF) (Report).
  11. 1 2 3 4 ITRC, 2000. "Dense Non-Aqueous Phase Liquids (DNAPLs): Review of Emerging Characterization and Remediation Technologies" http://www.itrcweb.org/Documents/DNAPLs-1.pdf
  12. 1 2 3 4 Ruth M Davison, Gary P Weathhall and David N Lerner, 2002. Source Treatment for Dense Non-Aqueous Phase Liquids. Technical Report P5-051/TR/01. http://publications.environment-agency.gov.uk/pdf/SP5-051-TR-1-e-p.pdf Archived 2006-02-18 at the Wayback Machine
  13. ITRC, 2007. In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones: Case Studies.