Dental pulp test

Last updated

Dental pulpal testing is a clinical and diagnostic aid used in dentistry to help establish the health of the dental pulp within the pulp chamber and root canals of a tooth. Such investigations are important in aiding dentists in devising a treatment plan for the tooth being tested.

Contents

There are two major types of dental pulp tests. Vitality testing assesses the blood supply to the tooth, whilst sensitivity testing tests the sensory supply.

Clinical application

Dental pulp tests are valuable techniques used to establish the pulpal health status of a tooth in dentistry. The diagnostic information obtained from pulpal testing is then used alongside a patient's history, clinical and radiographic findings to determine a diagnosis and prognosis of the tooth.

Pulp tests are useful for the following procedures in dentistry:

Pulpal tests may be conducted via stimulation of the sensory fibres within the pulp (sensitivity testing) or by assessing pulpal blood flow (vitality testing). All available techniques are reported to have limitations in terms of accuracy and reproducibility [1] and therefore require careful interpretation in clinical practice.

Sensitivity testing

Sensitivity tests assess the sensory response of a tooth to an external stimulus, results which may be extrapolated to indirectly determine pulpal health status. Sensory stimuli, such as heat, cold or an electrical current, are applied to the tooth in question in order to stimulate the nocireceptors within the pulp. The type of sensory fibres activated and therefore the response felt by the patient depends on the stimulus used. Sensibility testing is based on Brännström's hydrodynamic theory, which postulates that the activation of nocireceptors is caused by fluid movement within the dentinal tubules in response to thermal, electrical, mechanical or osmotic stimuli. [2]

Responses to sensitivity testing

There are three primary outcomes of a pulp sensitivity test:

Types of sensitivity tests

Thermal tests

Thermal testing, which involves the application of either hot or cold stimuli to the tooth, is the most common form of sensibility test.

A number of products are available for cold testing, each with varying melting points. Although household ice (0 °C [32 °F]) is cheap and easy to obtain, it is not as accurate as colder products. [3] Dry ice (−78 °C [−108 °F]) can be used, however there have been concerns regarding the damaging effects of using something so cold in the oral cavity [4] despite evidence to suggest that dry ice has no negative impact on mucosal [5] or tooth structure. [6] [7] Refrigerant sprays, such as ethyl chloride (−12.3 °C [9.9 °F]), 1,1,1,2-tetrafluoroethane (−26.5 °C [−15.7 °F]) or a propane/butane/isobutane gas mixture are further commonly used cold tests. Cold testing is thought to stimulate Type Aδ fibres in the pulpal tissue, which elicit a short, sharp pain.

Heat tests include using heated instruments, such as a ball-ended probe or gutta-percha, a rubber commonly used in root canal procedures. Such tests are less commonly used as they are thought to be less accurate than cold tests, and may be more likely to cause damage to the teeth and surrounding mucosa. [4]

Electric pulp testing

An electrical current can be applied to the tooth in order to generate an action potential in the Type Aδ fibres within pulp, eliciting a neurological response. Such tests are conducted by applying a conducting medium (e.g. toothpaste) on a dried tooth and placing the probe tip of an electric pulp tester on the surface of the tooth closest to the pulp horn(s). The patient is then directed to hold the end of the conducting probe to complete the circuit and asked to let go of the probe when a ‘tingling’ sensation [8] is felt.

The use of electric pulp testing has been questioned in patients with traditional cardiac pacemakers despite no evidence of interferences in humans, particularly with more modern devices. [4] Care must be taken if using an electric pulp test on a tooth adjacent to metallic restorations, as these can create electrical conduction and yield false negative results.

Anaesthesia testing

When pulp testing results are inconclusive and that patients cannot localise or specify the pain or symptoms, an anaesthetic would be helpful and be used. The most posterior tooth in the area where the pain resonates undergoes anaesthesia by either infiltration or intraligamentary injection until pain diminishes. If the pain is still present, the procedure is repeated on the mesial teeth, one by one until the pain diminishes and is gone. If one can still not determine the source of the pain, the procedure will be repeated on the opposite arch. In the case that the pain cannot be localised to either the maxillary or mandibular arch, an inferior alveolar nerve block would be used. If the pain stops, such would imply that it involves teeth of the mandibular arch. [9]

Test cavity

The test cavity technique is only used as a last resort when results produced by all other methods above are inconclusive. High-speed burs are used without anaesthetic, drilling through enamel, or restorations to dentine. Throughout the drilling process, the patient is asked whether a painful sensation is felt, which would indicate pulpal vitality. In the event of a vital pulp, a painful response is provoked when dentin is contacted by the bur and the procedure will be stopped. A restoration would be then placed. Contrarily, when compared with vital pulp, pulp with partial necrosis will not be stimulated as extensively. In the case of partial necrosis, access to and into dentine would be needed, with the dentist progressively invading and drilling deeper into dentine, checking the sensory response—which is usually without sensory response because of the partial necrosis. Due to the invasiveness and possible anxiety that it may generate in patients, the test cavity technique is generally avoided. Also, there is little literature supporting its effectiveness, and it has been relatively anecdotal within clinical practice. [9]

Limitations of sensitivity testing

All tests have some limitations and test results should be interpreted by an experienced dentist under the bidirectional consideration of both clinical symptoms and radiography. Sensitivity tests only indicate the presence or absence of the nerve supply to an individual tooth. Even though a prolonged response to aforementioned tests indicate pulpal inflammation, the degree of inflammation or innervation cannot be inferred from these tests.

False positive or false negative results are possible when performing a sensitivity testing. A false positive response occurs when a patient is respondent to sensitivity testing despite a lack of sensory tissue in the tooth that is being tested. Such responses may occur due to innervation of adjacent teeth due to inadequate isolation of the tooth being tested, or in anxious patients who perceive pain despite no sensory stimulus, or in multi-rooted teeth which still have residual pulpal tissue residing in canals. [10] [11] False negative results occurs when innervated teeth do not respond to sensibility testing. Such can occur in individuals who have recently traumatised teeth, teeth with incomplete root development, teeth with heavy restorations or teeth that have significantly reduced pulp size due to production of tertiary or sclerotic dentine. [12]

Pulpal sensitivity testing may be regarded as inferior to vitality testing as they do not definitively prove that the tooth has a blood supply and is vital. Nonetheless, electric pulp testing and cold testing tests have been found to be accurate and reliable in the case of assessing pulpal health, especially when tests are used in combination. [13] [14] In addition, cold testing is also more accurate than electric pulp in the case of running tests upon immature or traumatised teeth. [15]

Despite the insights gained from sensitivity testing, a research study found that the density of nerve fibers and blood vessels in the pulp tissue, and the degree of oxygen saturation, may play a crucial role in interpreting the results. The presence of a higher density of nerve fibers may contribute to a lower threshold for electrical stimulation, suggesting the involvement of neural factors in pulp sensibility. Moreover, the positive correlation between blood vessel density and oxygen saturation, as well as the negative correlation between nerve fiber density and electrical voltage perception, provide valuable insights into the complex nature of dental pulp. Therefore, in addition to the standard sensitivity testing, more objective and accurate methods such as pulse oximetry might be necessary for a comprehensive understanding of pulp vitality. However, the findings of this study should be generalized with caution due to its small sample size and focus on healthy teeth extracted for orthodontic reasons. [16]

Vitality testing

Vitality tests assess the vascular supply of a tooth. Vascular supply is generally accepted as the earliest indicator of pulpal health. [17] [18] However, vitality tests have limitations and require strict adherence to correct application techniques. [14] The diagnostic methods to assess the vascular response of the pulp include:

Laser Doppler flowmetry

Laser Doppler flowmetry is able to assess blood flow within the dental pulp directly. A laser beam directed onto the tooth follows the path of dentinal tubules to the pulp. [19] The viability of the vascular supply of the pulp is determined by the output signal generated by the backscattered reflected light from circulating blood cells. [20] The reflected light is Doppler-shifted and has a different frequency to those reflected by the surrounding tissues which are static. An arbitrary unit of measurement, ‘perfusion unit’ (PU), is used to measure the concentration and velocity (flux) of blood cells. [19] [21] The output of laser Doppler flowmetry may be influenced by the blood flow in surrounding tissues, and therefore the test tooth must be adequately isolated to avoid inaccuracies. [22]

Pulse oximetry

Pulse oximetry utilises the difference in red and infrared light absorption by oxygenated and deoxygenated red blood cells within blood circulation to determine the oxygen saturation level (SaO2). [23] [24] Pulse oximetry, as well as laser Doppler flowmetry vitality tests may not truly reflect the real state of health of the dental pulp. This mainly happens in clinical scenarios when the dental pulp is diseased, yet a viable blood supply is maintained. [14] In a study from Slovenia, correlations were found between clinical tests and histological analysis of dental pulp in 26 healthy permanent premolars extracted for orthodontic reasons. It was found that a higher density of blood vessels in the pulp tissue corresponded to increased oxygen saturation levels measured through pulse oximetry, lending support to the validity of pulse oximetry as a reliable method for assessing pulp vitality. Furthermore, teeth with closed apices had a higher density of nerve fibers in the upper part of the dental pulp compared to teeth with open apices1. This further indicated individual variations in sensitivity, with teeth showing a higher density of nerve fibers having a lower threshold for electrical stimulation. [25]

Dual wavelength spectrophotometry

The use of dual wavelength light establishes the contents within the pulp chamber. [26]

Related Research Articles

<span class="mw-page-title-main">Dental dam</span> A thin, rectangular sheet used in dentistry to isolate the operative site

A dental dam or rubber dam is a thin, 6-inch (150 mm) square sheet, usually latex or nitrile, used in dentistry to isolate the operative site from the rest of the mouth. Sometimes termed "Kofferdam", it was designed in the United States in 1864 by Sanford Christie Barnum. It is used mainly in endodontic, fixed prosthodontic and general restorative treatments. Its purpose is both to prevent saliva interfering with the dental work, and to prevent instruments and materials from being inhaled, swallowed or damaging the mouth. In dentistry, use of a rubber dam is sometimes referred to as isolation or moisture control.

<span class="mw-page-title-main">Local anesthetic</span> Medications to reversibly block pain

A local anesthetic (LA) is a medication that causes absence of all sensation in a specific body part without loss of consciousness, as opposed to a general anesthetic, which eliminates all sensation in the entire body and causes unconsciousness. Local anesthetics are most commonly used to eliminate pain during or after surgery. When it is used on specific nerve pathways, paralysis also can be induced.

<span class="mw-page-title-main">Root canal</span> Hollow part of the root of a tooth

A root canal is the naturally occurring anatomic space within the root of a tooth. It consists of the pulp chamber, the main canal(s), and more intricate anatomical branches that may connect the root canals to each other or to the surface of the root.

<span class="mw-page-title-main">Endodontics</span> Field of dentistry

Endodontics is the dental specialty concerned with the study and treatment of the dental pulp.

<span class="mw-page-title-main">Toothache</span> Medical condition of the teeth

Toothache, also known as dental pain or tooth pain, is pain in the teeth or their supporting structures, caused by dental diseases or pain referred to the teeth by non-dental diseases. When severe it may impact sleep, eating, and other daily activities.

<span class="mw-page-title-main">Pulp (tooth)</span> Part in the center of a tooth made up of living connective tissue and cells called odontoblasts

The pulp is the connective tissue, nerves, blood vessels, and odontoblasts that comprise the innermost layer of a tooth. The pulp's activity and signalling processes regulate its behaviour.

Pulpitis is inflammation of dental pulp tissue. The pulp contains the blood vessels, the nerves, and connective tissue inside a tooth and provides the tooth's blood and nutrients. Pulpitis is mainly caused by bacterial infection which itself is a secondary development of caries. It manifests itself in the form of a toothache.

Dentin hypersensitivity is dental pain which is sharp in character and of short duration, arising from exposed dentin surfaces in response to stimuli, typically thermal, evaporative, tactile, osmotic, chemical or electrical; and which cannot be ascribed to any other dental disease.

<span class="mw-page-title-main">Nova Southeastern University College of Dental Medicine</span>

The Nova Southeastern University College of Dental Medicine is the dental school of Nova Southeastern University. It is located in Fort Lauderdale, Florida, United States. When it opened in 1997, it was the first new dental school to open in the United States in 24 years. It is the largest dental school in Florida. The school is accredited by the American Dental Association.

<span class="mw-page-title-main">Root canal treatment</span> Dental treatment

Root canal treatment is a treatment sequence for the infected pulp of a tooth which is intended to result in the elimination of infection and the protection of the decontaminated tooth from future microbial invasion. Root canals, and their associated pulp chamber, are the physical hollows within a tooth that are naturally inhabited by nerve tissue, blood vessels and other cellular entities. Together, these items constitute the dental pulp.

In dentistry, the hydrodynamic or fluid movement theory is one of three main theories developed to explain dentine hypersensitivity, which is a sharp, transient pain arising from stimuli exposure. It states that different types of stimuli act on exposed dentine, causing increased fluid flow through the dentinal tubules. In response to this movement, mechanoreceptors on the pulp nerves trigger the acute, temporary pain of dentine hypersensitivity.

<span class="mw-page-title-main">Pulpotomy</span>

Pulpotomy is a minimally invasive procedure performed in children on a primary tooth with extensive caries but without evidence of root pathology. The minimally invasive endodontic techniques of vital pulp therapy (VPT) are based on improved understanding of the capacity of pulp (nerve) tissues to heal and regenerate plus the availability of advanced endodontic materials. During the caries removal, this results in a carious or mechanical pulp exposure (bleeding) from the cavity. During pulpotomy, the inflamed/diseased pulp tissue is removed from the coronal pulp chamber of the tooth leaving healthy pulp tissue which is dressed with a long-term clinically successful medicament that maintains the survival of the pulp and promotes repair. There are various types of medicament placed above the vital pulp such as Buckley's Solution of formocresol, ferric sulfate, calcium hydroxide or mineral trioxide aggregate (MTA). MTA is a more recent material used for pulpotomies with a high rate of success, better than formocresol or ferric sulfate. It is also recommended to be the preferred pulpotomy agent in the future. After the coronal pulp chamber is filled, the tooth is restored with a filling material that seals the tooth from microleakage, such as a stainless steel crown which is the most effective long-term restoration. However, if there is sufficient remaining supporting tooth structure, other filling materials such as amalgam or composite resin can provide a functional alternative when the primary tooth has a life span of two years or less. The medium- to long-term treatment outcomes of pulpotomy in symptomatic permanent teeth with caries, especially in young people, indicate that pulpotomy can be a potential alternative to root canal therapy (RCT).

Pulp necrosis is a clinical diagnostic category indicating the death of cells and tissues in the pulp chamber of a tooth with or without bacterial invasion. It is often the result of many cases of dental trauma, caries and irreversible pulpitis.

A phoenix abscess is an acute exacerbation of a chronic periapical lesion. It is a dental abscess that can occur immediately following root canal treatment. Another cause is due to untreated necrotic pulp. It is also the result of inadequate debridement during the endodontic procedure. Risk of occurrence of a phoenix abscess is minimised by correct identification and instrumentation of the entire root canal, ensuring no missed anatomy.

<span class="mw-page-title-main">Dental trauma</span> Medical condition

Dental trauma refers to trauma (injury) to the teeth and/or periodontium, and nearby soft tissues such as the lips, tongue, etc. The study of dental trauma is called dental traumatology.

<span class="mw-page-title-main">Regenerative endodontics</span> Dental specialty

Regenerative endodontic procedures is defined as biologically based procedures designed to replace damaged structures such as dentin, root structures, and cells of the pulp-dentin complex. This new treatment modality aims to promote normal function of the pulp. It has become an alternative to heal apical periodontitis. Regenerative endodontics is the extension of root canal therapy. Conventional root canal therapy cleans and fills the pulp chamber with biologically inert material after destruction of the pulp due to dental caries, congenital deformity or trauma. Regenerative endodontics instead seeks to replace live tissue in the pulp chamber. The ultimate goal of regenerative endodontic procedures is to regenerate the tissues and the normal function of the dentin-pulp complex.

<span class="mw-page-title-main">Pulp capping</span>

Pulp capping is a technique used in dental restorations to prevent the dental pulp from necrosis, after being exposed, or nearly exposed during a cavity preparation, from a traumatic injury, or by a deep cavity that reaches the center of the tooth causing the pulp to die. When dental caries is removed from a tooth, all or most of the infected and softened enamel and dentin are removed. This can lead to the pulp of the tooth either being exposed or nearly exposed which causes pulpitis (inflammation). Pulpitis, in turn, can become irreversible, leading to pain and pulp necrosis, and necessitating either root canal treatment or extraction. The ultimate goal of pulp capping or stepwise caries removal is to protect a healthy dental pulp and avoid the need for root canal therapy.

Periapical granuloma, also sometimes referred to as a radicular granuloma or apical granuloma, is an inflammation at the tip of a dead (nonvital) tooth. It is a lesion or mass that typically starts out as an epithelial lined cyst, and undergoes an inward curvature that results in inflammation of granulation tissue at the root tips of a dead tooth. This is usually due to dental caries or a bacterial infection of the dental pulp. Periapical granuloma is an infrequent disorder that has an occurrence rate between 9.3 to 87.1 percent. Periapical granuloma is not a true granuloma due to the fact that it does not contain granulomatous inflammation; however, periapical granuloma is a common term used.

Tooth replantation is a form of restorative dentistry in which an avulsed or luxated tooth is reinserted and secured into its socket through a combination of dental procedures. The purposes of tooth replantation is to resolve tooth loss and preserve the natural landscape of the teeth. Whilst variations of the procedure exist including, Allotransplantation, where a tooth is transferred from one individual to another individual of the same species. It is a largely defunct practice due to the improvements made within the field of dentistry and due to the risks and complications involved including the transmission of diseases such as syphilis, histocompatibility, as well as the low success rate of the procedure, has resulted in its practice being largely abandoned. Autotransplantation, otherwise known as intentional replantation in dentistry, is defined as the surgical movement of a tooth from one site on an individual to another location in the same individual. While rare, modern dentistry uses replantation as a form of proactive care to prevent future complications and protect the natural dentition in cases where root canal and surgical endodontic treatments are problematic. In the modern context, tooth replantation most often refers to reattachment of an avulsed or luxated permanent tooth into its original socket.

Apexification is a method of dental treatment to induce a calcific barrier in a root with incomplete formation or open apex of a tooth with necrotic pulp. Pulpal involvement usually occurs as a consequence of trauma or caries involvement of young or immature permanent teeth. As a sequelae of untreated pulp involvement, loss of pulp vitality or necrotic pulp took place for the involved teeth.

References

  1. Chen, Eugene (September 2009). "Dental Pulp Testing; A Review". International Journal of Dentistry. 2009 (Article ID 365785): 365785. doi: 10.1155/2009/365785 . PMC   2837315 . PMID   20339575.
  2. Brännström, Martin (January 1986). "The hydrodynamic theory of dentinal pain: Sensation in preparations, caries, and the dentinal crack syndrome". Journal of Endodontics. 12 (10): 453–457. doi:10.1016/S0099-2399(86)80198-4. PMID   3465849.
  3. Fuss, Zvi; Trowbridge, Henry; Bender, I.B.; Rickoff, Bruce; Sorin, Solomon (January 1986). "Assessment of reliability of electrical and thermal pulp testing agents". Journal of Endodontics. 12 (7): 301–305. doi:10.1016/S0099-2399(86)80112-1. PMID   3461119.
  4. 1 2 3 Chen, Eugene; Abbott, Paul V. (2009). "Dental Pulp Testing: A Review". International Journal of Dentistry. 2009: 365785. doi: 10.1155/2009/365785 . PMC   2837315 . PMID   20339575.
  5. Ehrmann, EH (August 1977). "Pulp testers and pulp testing with particular reference to the use of dry ice". Australian Dental Journal. 22 (4): 272–9. doi:10.1111/j.1834-7819.1977.tb04511.x. PMID   277144.
  6. Rickoff, Bruce; Trowbridge, H.; Baker, John; Fuss, Z.; Bender, I.B. (January 1988). "Effects of thermal vitality tests on human dental pulp". Journal of Endodontics. 14 (10): 482–485. doi:10.1016/S0099-2399(88)80104-3. PMID   3255773.
  7. Augsburger, Robert A.; Peters, Donald D. (March 1981). "In vitro effects of ice, skin refrigerant, and CO2 snow on intrapulpal temperature". Journal of Endodontics. 7 (3): 110–116. doi:10.1016/S0099-2399(81)80124-0. PMID   6938630.
  8. Kleier, D.J.; Sexton, J.R.; Averbach, R.E. (December 1982). "Electronic and Clinical Comparison of Pulp Testers". Journal of Dental Research. 61 (12): 1413–1415. doi:10.1177/00220345820610120701. PMID   6960045. S2CID   42448558.
  9. 1 2 Mythri, H; Arun, A; Chachapan, Dale (2015). "Pulp vitality tests - an overview on comparison of sensitivity and vitality". Indian Journal of Oral Sciences. 6 (2): 41. doi: 10.4103/0976-6944.162622 . ISSN   0976-6944.
  10. Peters, Donald D.; Baumgartner, J. Craig; Lorton, Lewis (October 1994). "Adult pulpal diagnosis. I. Evaluation of the positive and negative responses to cold and electrical pulp tests". Journal of Endodontics. 20 (10): 506–511. doi:10.1016/S0099-2399(06)80048-8. PMID   7714424.
  11. Gopikrishna, Velayutham; Pradeep, Gali; Venkateshbabu, Nagendrababu (January 2009). "Assessment of pulp vitality: a review". International Journal of Paediatric Dentistry. 19 (1): 3–15. doi:10.1111/j.1365-263X.2008.00955.x. PMID   19120505.
  12. Jafarzadeh, H.; Abbott, P. V. (2010-07-01). "Review of pulp sensibility tests. Part I: general information and thermal tests: Pulp sensibility tests". International Endodontic Journal. 43 (9): 738–762. doi:10.1111/j.1365-2591.2010.01754.x. PMID   20609022.
  13. Jespersen, James J.; Hellstein, John; Williamson, Anne; Johnson, William T.; Qian, Fang (March 2014). "Evaluation of Dental Pulp Sensibility Tests in a Clinical Setting". Journal of Endodontics. 40 (3): 351–354. doi:10.1016/j.joen.2013.11.009. PMID   24565651.
  14. 1 2 3 Alghaithy, R. A.; Qualtrough, A. J. E. (February 2017). "Pulp sensibility and vitality tests for diagnosing pulpal health in permanent teeth: a critical review". International Endodontic Journal. 50 (2): 135–142. doi: 10.1111/iej.12611 . PMID   26789282.
  15. Fuss, Zvi; Trowbridge, Henry; Bender, I.B.; Rickoff, Bruce; Sorin, Solomon (January 1986). "Assessment of reliability of electrical and thermal pulp testing agents". Journal of Endodontics. 12 (7): 301–305. doi:10.1016/S0099-2399(86)80112-1. PMID   3461119.
  16. Tenyi, Ana; Nemeth, Lidija; Golež, Aljaž; Cankar, Ksenija; Milutinović, Aleksandra (2022-06-01). "Comparison of the vitality tests used in the dental clinical practice and histological analysis of the dental pulp". Bosnian Journal of Basic Medical Sciences. 22 (3): 374–381. doi:10.17305/bjbms.2021.6841. ISSN   2831-090X. PMC   9162753 . PMID   35150478.
  17. Thomas, Robyn (2010-02-11). "Pathways Of The Pulp (4th Ed) By: Stephen Cohen and Richard Burns (Eds)". Australian Endodontic Newsletter. 13 (1): 11. doi:10.1111/j.1747-4477.1987.tb00193.x. ISSN   0313-7384.
  18. Baumgardner, K.R.; Walton, R.E.; Osborne, J.W.; Born, J.L. (October 1996). "Induced Hypoxia in Rat Pulp and Periapex Demonstrated by 3H-Misonidazole Retention". Journal of Dental Research. 75 (10): 1753–1760. doi:10.1177/00220345960750100801. hdl: 2027.42/67588 . ISSN   0022-0345. PMID   8955670. S2CID   18460204.
  19. 1 2 MATTHEWS, B.; VONGSAVAN, N. (January 1993). "Advantages and limitations of laser Doppler flow meters". International Endodontic Journal. 26 (1): 9–10. doi:10.1111/j.1365-2591.1993.tb00531.x. PMID   8473040.
  20. Ingolfsson, AEgir Rafn; Tronstad, Leif; Hersh, Elliot V.; Riva, Charles E. (April 1994). "Efficacy of laser Doppler flowmetry in determining pulp vitality of human teeth". Dental Traumatology. 10 (2): 83–87. doi:10.1111/j.1600-9657.1994.tb00065.x. PMID   8062812.
  21. Vongsavan, N.; Matthewst, B. (1 January 1996). "Experiments in pigs on the sources of laser Doppler blood-flow signals recorded from teeth". Archives of Oral Biology. 41 (1): 97–103. doi:10.1016/0003-9969(94)00076-X. PMID   8833597.
  22. Polat, Serkan; Er, Kürşat; Akpinar, Kerem E; Polat, N.Tülin (January 2004). "The sources of laser Doppler blood-flow signals recorded from vital and root canal treated teeth". Archives of Oral Biology. 49 (1): 53–57. doi:10.1016/S0003-9969(03)00197-3. PMID   14693197.
  23. Munshi, A.; Hegde, Amitha; Radhakrishnan, Sangeeth (January 2003). "Pulse oximetry: a diagnostic instrument in pulpal vitality testing". Journal of Clinical Pediatric Dentistry. 26 (2): 141–145. doi:10.17796/jcpd.26.2.2j25008jg6u86236. PMID   11874005.
  24. Noblett, W. Craig; Wilcox, Lisa R.; Scamman, Franklin; Johnson, William T.; Diaz-Arnold, Ana (January 1996). "Detection of pulpal circulation in vitro by pulse oximetry". Journal of Endodontics. 22 (1): 1–5. doi:10.1016/S0099-2399(96)80226-3. PMID   8618078.
  25. Tenyi, Ana; Nemeth, Lidija; Golež, Aljaž; Cankar, Ksenija; Milutinović, Aleksandra (2022-06-01). "Comparison of the vitality tests used in the dental clinical practice and histological analysis of the dental pulp". Bosnian Journal of Basic Medical Sciences. 22 (3): 374–381. doi:10.17305/bjbms.2021.6841. ISSN   2831-090X. PMC   9162753 . PMID   35150478.
  26. Nissan, R.; Trope, M.; Zhang, C. D.; Chance, B. (October 1992). "Dual wavelength spectrophotometry as a diagnostic test of the pulp chamber contents". Oral Surgery, Oral Medicine, and Oral Pathology. 74 (4): 508–514. doi:10.1016/0030-4220(92)90304-9. PMID   1408029.