Design-based learning

Last updated

Design-based learning (DBL), also known as design-based instruction, is an inquiry-based form of learning, or pedagogy, that is based on integration of design thinking and the design process into the classroom at the K-12 and post-secondary levels. [1] [2] Design-based learning environments can be found across many disciplines, including those traditionally associated with design (e.g. art, architecture, engineering, interior design, graphic design), as well as others not normally considered to be design-related (science, technology, business, humanities). [3] [4] DBL, as well as project-based learning and problem-based learning, is used to teach 21st century skills such as communication and collaboration and foster deeper learning. [5]

Contents

Deeper learning is supported when students design and create an artifact that requires understanding and application of knowledge. DBL activity supports iteration as students create, assess, and redesign their projects. The work's complexity often requires collaboration and specialized roles, providing students with the opportunity to become "experts" in a particular area. Design projects require students to establish goals and constraints, generate ideas, and create prototypes through storyboarding or other representational practices. [1] Robotics competitions in schools are popular design-based learning activities, wherein student teams design, build and then pilot their robots in competitive challenges.

Design-based learning was developed in the 1980s by Doreen Nelson, a professor at California State Polytechnic University, Pomona and the Art Center College of Design. Her findings suggested that kinesthetic problem-solving helps students acquire, retain, and synthesize information in practical ways. [6] [7]

Design process

The design process is an iterative process that has a variety of sequential steps: [8]

ADDIE Model ADDIE Model of Design.jpg
ADDIE Model

A similar approach is the ADDIE Model of instructional design, a framework of generic processes used by instructional designers and training developers. [9] It represents a descriptive guideline with five distinct phases:

Results

Positive benefits of the design-based learning approach have been observed, including student-based learning where students (often) identify their project's needs, develop their own ideas, and engage in a larger range of thinking than with the traditional scripted inquiry model. [8] The results from the 2008 study by Mehalik et al. found significant improvement in student performance using the DBL model compared to the scripted model. [8] A 1998 study (Fraser, Fraser & Tobin, 1991) suggest that DBL has the potential to increase students' desire to learn, enhance success in science class, and increase interest in science topics. Students were observed to be engaged in DBL and the lower-achieving students were able to explain concepts at higher levels than previously observed by their teacher. In-depth experience in design activities and creation of meaningful outcomes in technology were observed in terms of the finished product, documentation, and reflection. [10]

Significant benefits of implementing DBL has been observed in the areas of math and science (Darling-Hammond et al., 2008). [5] Research has found that students who participate in learning by design projects have a more systematic understanding of a system's parts and functions that control groups (Hmelo, Holton, & Kolodner, 2000). [5]

A 2000 study (Hmelo, Holton, and Kolodner) found that the design project led to better learning outcomes and included deeper learning than the traditional learning approach. The researchers also noted that the students developed greater understanding of complex systems. The study found that in using DBL, both higher-achieving and lower-achieving students showed strong evidence of progress in learning the targeted concepts, students were able to apply key concepts in their work, and there were positive effects on motivation and sense of ownership over work product by both groups and individual students. [1]

Implementation

The teaching of 21st century skills is more effective when teachers gain expertise in both the practice and the teaching of these skills, in effect becoming successful 21st century learners in the areas of: communication and collaboration amongst teachers and with students; being flexible with new classroom dynamics; fostering independent student learning; adapting teaching and learning styles to new pedagogical approaches.

Challenges to implementing DBL include developing the skills of the instructors: [5]

See also

Related Research Articles

An instructional theory is "a theory that offers explicit guidance on how to better help people learn and develop." It provides insights about what is likely to happen and why with respect to different kinds of teaching and learning activities while helping indicate approaches for their evaluation. Instructional designers focus on how to best structure material and instructional behavior to facilitate learning.

Instructional design (ID), also known as instructional systems design and originally known as instructional systems development (ISD), is the practice of systematically designing, developing and delivering instructional materials and experiences, both digital and physical, in a consistent and reliable fashion toward an efficient, effective, appealing, engaging and inspiring acquisition of knowledge. The process consists broadly of determining the state and needs of the learner, defining the end goal of instruction, and creating some "intervention" to assist in the transition. The outcome of this instruction may be directly observable and scientifically measured or completely hidden and assumed. There are many instructional design models but many are based on the ADDIE model with the five phases: analysis, design, development, implementation, and evaluation.

Instructional scaffolding is the support given to a student by an instructor throughout the learning process. This support is specifically tailored to each student; this instructional approach allows students to experience student-centered learning, which tends to facilitate more efficient learning than teacher-centered learning. This learning process promotes a deeper level of learning than many other common teaching strategies.

<span class="mw-page-title-main">Pedagogy</span> Theory and practice of education

Pedagogy, from Ancient Greek παιδαγωγία (paidagōgía), most commonly understood as the approach to teaching, is the theory and practice of learning, and how this process influences, and is influenced by, the social, political, and psychological development of learners. Pedagogy, taken as an academic discipline, is the study of how knowledge and skills are imparted in an educational context, and it considers the interactions that take place during learning. Both the theory and practice of pedagogy vary greatly as they reflect different social, political, and cultural contexts.

<span class="mw-page-title-main">Experiential learning</span> Learn by reflect on active involvement

Experiential learning (ExL) is the process of learning through experience, and is more narrowly defined as "learning through reflection on doing". Hands-on learning can be a form of experiential learning, but does not necessarily involve students reflecting on their product. Experiential learning is distinct from rote or didactic learning, in which the learner plays a comparatively passive role. It is related to, but not synonymous with, other forms of active learning such as action learning, adventure learning, free-choice learning, cooperative learning, service-learning, and situated learning.

<span class="mw-page-title-main">Constructivism (philosophy of education)</span> Philosophical viewpoint about the nature of knowledge; theory of knowledge

Constructivism is a theory in education which posits that individuals or learners do not acquire knowledge and understanding by passively perceiving it within a direct process of knowledge transmission, rather they construct new understandings and knowledge through experience and social discourse, integrating new information with what they already know. For children, this includes knowledge gained prior to entering school. It is associated with various philosophical positions, particularly in epistemology as well as ontology, politics, and ethics. The origin of the theory is also linked to Swiss developmental psychologist Jean Piaget's theory of cognitive development.

<span class="mw-page-title-main">Project-based learning</span> Learner centric pedagogy

Project-based learning (PBL) is a student-centered pedagogy that involves a dynamic classroom approach in which it is believed that students acquire a deeper knowledge through active exploration of real-world challenges and problems. Students learn about a subject by working for an extended period of time to investigate and respond to a complex question, challenge, or problem. It is a style of active learning and inquiry-based learning. PBL contrasts with paper-based, rote memorization, or teacher-led instruction that presents established facts or portrays a smooth path to knowledge by instead posing questions, problems, or scenarios.

Editing technology is the use of technology tools in general content areas in education in order to allow students to apply computer and technology skills to learning and problem-solving. Generally speaking, the curriculum drives the use of technology and not vice versa. Technology integration is defined as the use of technology to enhance and support the educational environment. Technology integration in the classroom can also support classroom instruction by creating opportunities for students to complete assignments on the computer rather than with normal pencil and paper. In a larger sense, technology integration can also refer to the use of an integration platform and application programming interface (API) in the management of a school, to integrate disparate SaaS applications, databases, and programs used by an educational institution so that their data can be shared in real-time across all systems on campus, thus supporting students' education by improving data quality and access for faculty and staff.

"Curriculum integration with the use of technology involves the infusion of technology as a tool to enhance the learning in a content area or multidisciplinary setting... Effective technology integration is achieved when students can select technology tools to help them obtain information on time, analyze and synthesize it, and present it professionally to an authentic audience. Technology should become an integral part of how the classroom functions—as accessible as all other classroom tools. The focus in each lesson or unit is the curriculum outcome, not the technology."

<span class="mw-page-title-main">Discovery learning</span> Technique of inquiry-based learning and is considered a constructivist based approach to education

Discovery learning is a technique of inquiry-based learning and is considered a constructivist based approach to education. It is also referred to as problem-based learning, experiential learning and 21st century learning. It is supported by the work of learning theorists and psychologists Jean Piaget, Jerome Bruner, and Seymour Papert.

Authentic assessment is the measurement of "intellectual accomplishments that are worthwhile, significant, and meaningful," as contrasted with multiple-choice tests. Authentic assessment can be devised by the teacher, or in collaboration with the student by engaging student voice. When applying authentic assessment to student learning and achievement, a teacher applies criteria related to “construction of knowledge, disciplined inquiry, and the value of achievement beyond the school.”

Inquiry-based learning is a form of active learning that starts by posing questions, problems or scenarios. It contrasts with traditional education, which generally relies on the teacher presenting facts and their knowledge about the subject. Inquiry-based learning is often assisted by a facilitator rather than a lecturer. Inquirers will identify and research issues and questions to develop knowledge or solutions. Inquiry-based learning includes problem-based learning, and is generally used in small-scale investigations and projects, as well as research. The inquiry-based instruction is principally very closely related to the development and practice of thinking and problem-solving skills.

Direct instruction (DI) is the explicit teaching of a skill set using lectures or demonstrations of the material to students. A particular subset, denoted by capitalization as Direct Instruction, refers to the approach developed by Siegfried Engelmann and Wesley C. Becker that was first implemented in the 1960s. DI teaches by explicit instruction, in contrast to exploratory models such as inquiry-based learning. DI includes tutorials, participatory laboratory classes, discussions, recitation, seminars, workshops, observation, active learning, practicum, or internships. Model includes "I do" (instructor), "We do", "You do".

E-learning theory describes the cognitive science principles of effective multimedia learning using electronic educational technology.

Challenge-based learning (CBL) is a framework for learning while solving real-world Challenges. The framework is collaborative and hands-on, asking all participants to identify Big Ideas, ask good questions, discover and solve Challenges, gain in-depth subject area knowledge, develop 21st-century skills, and share their thoughts with the world.

<span class="mw-page-title-main">Thematic learning</span> Highlighting a theme for teaching purposes

Thematic teaching is the selecting and highlighting of a theme through an instructional unit or module, course, or multiple courses. It is often interdisciplinary, highlighting the relationship of knowledge across academic disciplines and everyday life. Themes can be topics or take the form of overarching questions. Thematic learning is closely related to interdisciplinary or integrated instruction, topic-, project- or phenomenon-based learning. Thematic teaching is commonly associated with elementary classrooms and middle schools using a team-based approach, but this pedagogy is equally relevant in secondary schools and with adult learners. A common application is that of second or foreign language teaching, where the approach is more commonly known as theme-based instruction. Thematic instruction assumes students learn best when they can associate new information holistically with across the entire curriculum and with their own lives, experiences, and communities.

<span class="mw-page-title-main">Open educational practices</span>

Open educational practices (OEP) are part of the broader open education landscape, including the openness movement in general. It is a term with multiple layers and dimensions and is often used interchangeably with open pedagogy or open practices. OEP represent teaching and learning techniques that draw upon open and participatory technologies and high-quality open educational resources (OER) in order to facilitate collaborative and flexible learning. Because OEP emerged from the study of OER, there is a strong connection between the two concepts. OEP, for example, often, but not always, involve the application of OER to the teaching and learning process. Open educational practices aim to take the focus beyond building further access to OER and consider how in practice, such resources support education and promote quality and innovation in teaching and learning. The focus in OEP is on reproduction/understanding, connecting information, application, competence, and responsibility rather than the availability of good resources. OEP is a broad concept which can be characterised by a range of collaborative pedagogical practices that include the use, reuse, and creation of OER and that often employ social and participatory technologies for interaction, peer-learning, knowledge creation and sharing, empowerment of learners, and open sharing of teaching practices.

In education, authentic learning is an instructional approach that allows students to explore, discuss, and meaningfully construct concepts and relationships in contexts that involve real-world problems and projects that are relevant to the learner. It refers to a "wide variety of educational and instructional techniques focused on connecting what students are taught in school to real-world issues, problems, and applications. The basic idea is that students are more likely to be interested in what they are learning, more motivated to learn new concepts and skills, and better prepared to succeed in college, careers, and adulthood if what they are learning mirrors real-life contexts, equips them with practical and useful skills, and addresses topics that are relevant and applicable to their lives outside of school."

<span class="mw-page-title-main">21st century skills</span> Skills identified as being required for success in the 21st century

21st century skills comprise skills, abilities, and learning dispositions that have been identified as being required for success in 21st century society and workplaces by educators, business leaders, academics, and governmental agencies. This is part of a growing international movement focusing on the skills required for students to master in preparation for success in a rapidly changing, digital society. Many of these skills are also associated with deeper learning, which is based on mastering skills such as analytic reasoning, complex problem solving, and teamwork. These skills differ from traditional academic skills in that they are not primarily content knowledge-based.

<span class="mw-page-title-main">Learning environment</span> Term in education

The term learning environment can refer to an educational approach, cultural context, or physical setting in which teaching and learning occur. The term is commonly used as a more definitive alternative to "classroom", but it typically refers to the context of educational philosophy or knowledge experienced by the student and may also encompass a variety of learning cultures—its presiding ethos and characteristics, how individuals interact, governing structures, and philosophy. In a societal sense, learning environment may refer to the culture of the population it serves and of their location. Learning environments are highly diverse in use, learning styles, organization, and educational institution. The culture and context of a place or organization includes such factors as a way of thinking, behaving, or working, also known as organizational culture. For a learning environment such as an educational institution, it also includes such factors as operational characteristics of the instructors, instructional group, or institution; the philosophy or knowledge experienced by the student and may also encompass a variety of learning cultures—its presiding ethos and characteristics, how individuals interact, governing structures, and philosophy in learning styles and pedagogies used; and the societal culture of where the learning is occurring. Although physical environments do not determine educational activities, there is evidence of a relationship between school settings and the activities that take place there.

Phenomenon-based learning is a multidisciplinary, constructivist form of learning or pedagogy where students study a topic or concept in a holistic approach instead of in a subject-based approach. PhBL includes both topical learning, where the phenomenon studied is a specific topic, event, or fact, and thematic learning, where the phenomenon studied is a concept or idea. PhBL emerged as a response to the idea that traditional, subject-based learning is outdated and removed from the real-world and does not offer the optimum approach to development of 21st century skills. It has been used in a wide variety of higher educational institutions and more recently in grade schools.

References

  1. 1 2 3 Powerful Learning: Studies Show Deep Understanding Derives from Collaborative Methods, By Brigid Barron, Linda Darling-Hammond, in Edutopia, October 8, 2008. Retrieved 2016-03-15
  2. Design-based learning (DBL) to Innovate STEM Education, Stanford University. Retrieved 2016-03-15
  3. Teaching for meaningful learning, Edutopia Archived 2016-03-15 at the Wayback Machine . Retrieved 2016-03-15
  4. Design Without Designers, Diane Burdick, May 2009. Retrieved 2016-03-15
  5. 1 2 3 4 21st Century Skills - for Students and Teachers, Research and Evaluation, August 2010, Kamehameha Schools Archived 2016-03-28 at the Wayback Machine . Retrieved 2016-03-15
  6. Design based learning, UCLA Archived 2016-03-15 at the Wayback Machine . Retrieved 2016-03-15
  7. About Doreen, Cal Poly Pomona Archived 2016-08-19 at the Wayback Machine . Retrieved 2016-03-15
  8. 1 2 3 Middle-School Science Through Design- Based Learning versus Scripted Inquiry: Better Overall Science Concept Learning and Equity Gap Reduction, Mehalik, Doppelt, Schunn. Journal of Engineering Education, January 2008. Retrieved 2016-03-15
  9. Morrison, Gary R. Designing Effective Instruction, 6th Edition. John Wiley & Sons, 2010.
  10. Engagement and Achievements: A Case Study of Design-Based Learning in a Science Context, Doppelt, Mehalik, Schunn, Silk, Krysinski Archived 2016-03-15 at the Wayback Machine . Retrieved 2016-03-15