Determinant method

Last updated

In mathematics, the determinant method is any of a family of techniques in analytic number theory.

The name was coined by Roger Heath-Brown and comes from the fact that the center piece of the method is estimating a certain determinant. Its main application is to give an upper bound for the number of rational points of bounded height on or near algebraic varieties defined over the rational numbers. The main novelty of the determinant method is that in all incarnations, the estimates obtained are uniform with respect to the coefficients of the polynomials defining the variety and only depend on the degree and dimension of the variety.

Development

The original version of the determinant method was developed by Enrico Bombieri and Jonathan Pila in 1989. [1] In its original context, Bombieri and Pila's results applied only to as their arguments depended heavily on the geometry of the plane. The Bombieri-Pila version of the determinant method would later be dubbed the real-analytic determinant method. Oscar Marmon generalized Bombieri and Pila's results in 2010. [2]

Bombieri and Pila's result was novel because of its uniformity with respect to the polynomials defining the curves. Roger Heath-Brown obtained the analogous result of Bombieri and Pila in higher dimensions in 2002, [3] using a different argument. Heath-Brown's approach would later be dubbed the local p-adic determinant method. The main use of Heath-Brown's determinant method has been to try to solve the so-called dimension growth conjecture. [4] [5]

Aside from the real-analytic approach of Bombieri and Pila and Heath-Brown's local -adic approach, other approaches include the approximate determinant method also due to Heath-Brown, [6] the global determinant method of Salberger, [7] [8] and a new variant of the approximate determinant method due to Dietmann and Marmon which applies to polynomials which are close to being bihomogeneous. [9]

In 2012, this method is reformulated by the language of Arakelov theory by Huayi Chen. [10] [11] This formulation was further studied by Chunhui Liu in 2022. [12]

In 2016, Stanley Yao Xiao obtained a generalization of Salberger's global determinant method to the setting of weighted projective space. [13]

Related Research Articles

<span class="mw-page-title-main">Algebraic geometry</span> Branch of mathematics

Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

<span class="mw-page-title-main">Curve</span> Mathematical idealization of the trace left by a moving point

In mathematics, a curve is an object similar to a line, but that does not have to be straight.

<span class="mw-page-title-main">Faltings's theorem</span> Curves of genus > 1 over the rationals have only finitely many rational points

Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. The conjecture was later generalized by replacing by any number field.

In mathematics, the Birch and Swinnerton-Dyer conjecture describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of the most challenging mathematical problems. It is named after mathematicians Bryan John Birch and Peter Swinnerton-Dyer, who developed the conjecture during the first half of the 1960s with the help of machine computation. Only special cases of the conjecture have been proven.

In mathematics, the Nagell–Lutz theorem is a result in the diophantine geometry of elliptic curves, which describes rational torsion points on elliptic curves over the integers. It is named for Trygve Nagell and Élisabeth Lutz.

In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each different prime number. This is handled by examining the equation in the completions of the rational numbers: the real numbers and the p-adic numbers. A more formal version of the Hasse principle states that certain types of equations have a rational solution if and only if they have a solution in the real numbers and in the p-adic numbers for each prime p.

In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.

<span class="mw-page-title-main">Roger Heath-Brown</span> British mathematician

David Rodney "Roger" Heath-Brown is a British mathematician working in the field of analytic number theory.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties to the real numbers.

In arithmetic geometry, the Bombieri–Lang conjecture is an unsolved problem conjectured by Enrico Bombieri and Serge Lang about the Zariski density of the set of rational points of an algebraic variety of general type.

In mathematics, specifically in transcendental number theory and Diophantine approximation, Siegel's lemma refers to bounds on the solutions of linear equations obtained by the construction of auxiliary functions. The existence of these polynomials was proven by Axel Thue; Thue's proof used Dirichlet's box principle. Carl Ludwig Siegel published his lemma in 1929. It is a pure existence theorem for a system of linear equations.

In mathematics, auxiliary functions are an important construction in transcendental number theory. They are functions that appear in most proofs in this area of mathematics and that have specific, desirable properties, such as taking the value zero for many arguments, or having a zero of high order at some point.

Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Part of the inspiration comes from complex dynamics, the study of the iteration of self-maps of the complex plane or other complex algebraic varieties. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, p-adic, or algebraic points under repeated application of a polynomial or rational function. A fundamental goal is to describe arithmetic properties in terms of underlying geometric structures.

In arithmetic geometry, the Tate–Shafarevich groupШ(A/K) of an abelian variety A (or more generally a group scheme) defined over a number field K consists of the elements of the Weil–Châtelet group , where is the absolute Galois group of K, that become trivial in all of the completions of K (i.e., the real and complex completions as well as the p-adic fields obtained from K by completing with respect to all its Archimedean and non Archimedean valuations v). Thus, in terms of Galois cohomology, Ш(A/K) can be defined as

<span class="mw-page-title-main">Christopher Deninger</span> German mathematician (born 1958)

Christopher Deninger is a German mathematician at the University of Münster. Deninger's research focuses on arithmetic geometry, including applications to L-functions.

In algebraic geometry and number theory, the torsion conjecture or uniform boundedness conjecture for torsion points for abelian varieties states that the order of the torsion group of an abelian variety over a number field can be bounded in terms of the dimension of the variety and the number field. A stronger version of the conjecture is that the torsion is bounded in terms of the dimension of the variety and the degree of the number field. The torsion conjecture has been completely resolved in the case of elliptic curves.

<span class="mw-page-title-main">Umberto Zannier</span> Italian mathematician

Umberto Zannier is an Italian mathematician, specializing in number theory and Diophantine geometry.

<span class="mw-page-title-main">Jennifer Balakrishnan</span> American mathematician

Jennifer Shyamala Sayaka Balakrishnan is an American mathematician known for leading a team that solved the problem of the "cursed curve", a Diophantine equation that was known for being "famously difficult". More generally, Balakrishnan specializes in algorithmic number theory and arithmetic geometry. She is a Clare Boothe Luce Professor at Boston University.

In arithmetic geometry, the uniform boundedness conjecture for rational points asserts that for a given number field and a positive integer , there exists a number depending only on and such that for any algebraic curve defined over having genus equal to has at most -rational points. This is a refinement of Faltings's theorem, which asserts that the set of -rational points is necessarily finite.

References

  1. E. Bombieri, J. Pila, The number of integral points on arcs and ovals, Duke Mathematical Journal, 59(2), pages 337–357 (1989)
  2. O. Marmon, A generalization of the Bombieri-Pila determinant method, Proceedings of the HIM trimester on Diophantine equations, Journal of Mathematical Sciences, 171, pages 736–744 (2010) doi : 10.1007/s10958-010-0178-5
  3. D.R. Heath-Brown, The density of rational points on curves and surfaces, Annals of Mathematics, 155(2), pages 553-598 (2002)
  4. D.R. Heath-Brown, The density of rational points on curves and surfaces, Annals of Mathematics, 155(2), pages 553–598 (2002)
  5. T.D. Browning, D.R. Heath-Brown, P. Salberger, Counting rational points on algebraic varieties, Duke Mathematical Journal, 132(3), pages 545–578 (2006)
  6. D.R. Heath-Brown, Sums and differences of three -th powers, Journal of Number Theory, 129, pages 1579–1594 (2009)
  7. P. Salberger, Counting rational points on projective varieties, preprint 2009
  8. T. D. Browning, Quantitative Arithmetic of Projective Varieties, Progress in Mathematics, 277, Birkhauser
  9. R. Dietmann, O. Marmon, The density of twins of -free numbers, Bulletin of the London Mathematical Society, 46(4), pages 818–826 (2014)
  10. H. Chen, Explicit uniform estimation of rational points I. Estimation of heights. J. Reine Angew. Math. 668 (2012), 59–88.
  11. H. Chen, Explicit uniform estimation of rational points II. Hypersurface coverings. J. Reine Angew. Math. 668 (2012), 89–108.
  12. C. Liu, On the global determinant method, Bulletin de la Société Mathématique de France, 150(2022), no. 4, 699–741.
  13. S.Y. Xiao, Power-free values of binary forms and the global determinant method. Int Math Res Notices (2016) doi : 10.1093/imrn/rnw165