Diameter (computational geometry)

Last updated

In computational geometry, the diameter of a finite set of points or of a polygon is its diameter as a set, the largest distance between any two points. The diameter is always attained by two points of the convex hull of the input. A trivial brute-force search can be used to find the diameter of points in time (assuming constant-time distance evaluations) but faster algorithms are possible for points in low dimensions.

See also

Related Research Articles

<span class="mw-page-title-main">Convex hull</span> Smallest convex set containing a given set

In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.

<span class="mw-page-title-main">Bounding sphere</span> Sphere that contains a set of objects

In mathematics, given a non-empty set of objects of finite extension in -dimensional space, for example a set of points, a bounding sphere, enclosing sphere or enclosing ball for that set is a -dimensional solid sphere containing all of these objects.

<span class="mw-page-title-main">Euclidean minimum spanning tree</span> Shortest network connecting points

A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.

<span class="mw-page-title-main">Klee's measure problem</span> Computational geometry problem

In computational geometry, Klee's measure problem is the problem of determining how efficiently the measure of a union of (multidimensional) rectangular ranges can be computed. Here, a d-dimensional rectangular range is defined to be a Cartesian product of d intervals of real numbers, which is a subset of Rd.

<span class="mw-page-title-main">K-set (geometry)</span> Points separated from others by a line

In discrete geometry, a -set of a finite point set in the Euclidean plane is a subset of elements of that can be strictly separated from the remaining points by a line. More generally, in Euclidean space of higher dimensions, a -set of a finite point set is a subset of elements that can be separated from the remaining points by a hyperplane. In particular, when , the line or hyperplane that separates a -set from the rest of is a halving line or halving plane.

<span class="mw-page-title-main">Closest pair of points problem</span> Computational geometry problem

The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane was among the first geometric problems that were treated at the origins of the systematic study of the computational complexity of geometric algorithms.

Algorithms that construct convex hulls of various objects have a broad range of applications in mathematics and computer science.

<span class="mw-page-title-main">Relative neighborhood graph</span>

In computational geometry, the relative neighborhood graph (RNG) is an undirected graph defined on a set of points in the Euclidean plane by connecting two points and by an edge whenever there does not exist a third point that is closer to both and than they are to each other. This graph was proposed by Godfried Toussaint in 1980 as a way of defining a structure from a set of points that would match human perceptions of the shape of the set.

<span class="mw-page-title-main">Smallest-circle problem</span> Finding the smallest circle that contains all given points

The smallest-circle problem is a computational geometry problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane. The corresponding problem in n-dimensional space, the smallest bounding sphere problem, is to compute the smallest n-sphere that contains all of a given set of points. The smallest-circle problem was initially proposed by the English mathematician James Joseph Sylvester in 1857.

<span class="mw-page-title-main">Rotating calipers</span>

In computational geometry, the method of rotating calipers is an algorithm design technique that can be used to solve optimization problems including finding the width or diameter of a set of points.

<span class="mw-page-title-main">Kenneth L. Clarkson</span> American computer scientist

Kenneth Lee Clarkson is an American computer scientist known for his research in computational geometry. He is a researcher at the IBM Almaden Research Center, and co-editor-in-chief of Discrete and Computational Geometry and of the Journal of Computational Geometry.

In computational geometry and computer science, the minimum-weight triangulation problem is the problem of finding a triangulation of minimal total edge length. That is, an input polygon or the convex hull of an input point set must be subdivided into triangles that meet edge-to-edge and vertex-to-vertex, in such a way as to minimize the sum of the perimeters of the triangles. The problem is NP-hard for point set inputs, but may be approximated to any desired degree of accuracy. For polygon inputs, it may be solved exactly in polynomial time. The minimum weight triangulation has also sometimes been called the optimal triangulation.

<span class="mw-page-title-main">Opaque set</span> Shape that blocks all lines of sight

In discrete geometry, an opaque set is a system of curves or other set in the plane that blocks all lines of sight across a polygon, circle, or other shape. Opaque sets have also been called barriers, beam detectors, opaque covers, or opaque forests. Opaque sets were introduced by Stefan Mazurkiewicz in 1916, and the problem of minimizing their total length was posed by Frederick Bagemihl in 1959.

In computational geometry, a maximum disjoint set (MDS) is a largest set of non-overlapping geometric shapes selected from a given set of candidate shapes.

<span class="mw-page-title-main">Maxima of a point set</span>

In computational geometry, a point p in a finite set of points S is said to be maximal or non-dominated if there is no other point q in S whose coordinates are all greater than or equal to the corresponding coordinates of p. The maxima of a point setS are all the maximal points of S. The problem of finding all maximal points, sometimes called the problem of the maxima or maxima set problem, has been studied as a variant of the convex hull and orthogonal convex hull problems. It is equivalent to finding the Pareto frontier of a collection of points, and was called the floating-currency problem by Herbert Freeman based on an application involving comparing the relative wealth of individuals with different holdings of multiple currencies.

In geometry, a partition of a polygon is a set of primitive units, which do not overlap and whose union equals the polygon. A polygon partition problem is a problem of finding a partition which is minimal in some sense, for example a partition with a smallest number of units or with units of smallest total side-length.

The geometric set cover problem is the special case of the set cover problem in geometric settings. The input is a range space where is a universe of points in and is a family of subsets of called ranges, defined by the intersection of and geometric shapes such as disks and axis-parallel rectangles. The goal is to select a minimum-size subset of ranges such that every point in the universe is covered by some range in .

In the design and analysis of algorithms for combinatorial optimization, parametric search is a technique invented by Nimrod Megiddo for transforming a decision algorithm into an optimization algorithm. It is frequently used for solving optimization problems in computational geometry.

<span class="mw-page-title-main">Greedy geometric spanner</span>

In computational geometry, a greedy geometric spanner is an undirected graph whose distances approximate the Euclidean distances among a finite set of points in a Euclidean space. The vertices of the graph represent these points. The edges of the spanner are selected by a greedy algorithm that includes an edge whenever its two endpoints are not connected by a short path of shorter edges. The greedy spanner was first described in the PhD thesis of Gautam Das and conference paper and subsequent journal paper by Ingo Althöfer et al. These sources also credited Marshall Bern (unpublished) with the independent discovery of the same construction.

In metric geometry and computational geometry, a minimum-diameter spanning tree of a finite set of points in a metric space is a spanning tree in which the diameter is as small as possible.

References

  1. Toussaint, Godfried T. (1983), "Solving geometric problems with the rotating calipers", in Protonotarios, E. N.; Stassinopoulos, G. I.; Civalleri, P. P. (eds.), Proceedings of MELECON '83, Mediterranean Electrotechnical Conference, Athens, Greece, 24–26 May 1983, IEEE, pp. A10.02/1–4, CiteSeerX   10.1.1.155.5671
  2. Janardan, Ravi (1993), "On maintaining the width and diameter of a planar point-set online", International Journal of Computational Geometry & Applications , 3 (3): 331–344, doi:10.1142/S021819599300021X, MR   1241923
  3. Eppstein, David (1996), "Average case analysis of dynamic geometric optimization", Computational Geometry , 6 (1): 45–68, doi:10.1016/0925-7721(95)00018-6, MR   1387673
  4. Fernández-Baca, D. (2001), "On nonlinear parametric search", Algorithmica , 30 (1): 1–11, doi:10.1007/s00453-001-0001-2, MR   1816864
  5. Clarkson, Kenneth L.; Shor, Peter W. (1989), "Applications of random sampling in computational geometry II", Discrete & Computational Geometry , 4 (5): 387–421, doi:10.1007/BF02187740, MR   1014736
  6. Ramos, E. A. (2001), "An optimal deterministic algorithm for computing the diameter of a three-dimensional point set", Discrete & Computational Geometry , 26 (2): 233–244, doi:10.1007/s00454-001-0029-8, MR   1843439
  7. Yao, Andrew Chi Chih (1982), "On constructing minimum spanning trees in -dimensional spaces and related problems", SIAM Journal on Computing , 11 (4): 721–736, doi:10.1137/0211059, MR   0677663
  8. Chan, Timothy M. (2002), "Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus", International Journal of Computational Geometry and Applications , 12 (1–2): 67–85, doi:10.1142/S0218195902000748, MR   1885498